Skip to main content
Log in

Boundary node Petrov–Galerkin method in solid structures

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

Based on the interpolation of the Lagrange series and the Finite Block Method (FBM), the formulations of the Boundary Node Petrov–Galerkin Method (BNPGM) are presented in the weak form in this paper and their applications are demonstrated to the elasticity of functionally graded materials, subjected to static and dynamic loads. By introducing the mapping technique, a block of quadratic type is transformed from the Cartesian coordinate to the normalized coordinate with 8 seeds for two-dimensional problems. The first-order partial differential matrices of boundary nodes are obtained in terms of the nodal values of the boundary node, which can be utilized to determine the tractions on the boundary. Time-dependent partial differential equations are analyzed in the Laplace transformed domain and the Durbin’s inversion method is applied to determine the physical values in the time domain. Illustrative numerical examples are given and comparison has been made with the analytical solutions, the Boundary Element Method (BEM) and the Finite Element Method (FEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aliabadi MH (2002) The boundary element. Applications in solids and structures. John Wiley and Sons Ltd, Chichester

    MATH  Google Scholar 

  • Amirfakhrian M, Arghand M, Kansa EJ (2016) A new approximate method for an inverse time-dependent heat source problem using fundamental solutions and RBFs. Eng Anal Bound Elem 64:278–289

    Article  MathSciNet  Google Scholar 

  • Asadzadeh M, Marin HL, Sebu C (2014) The method of fundamental solutions for complex electrical impedance tomography. Eng Anal Bound Elem 46:126–139

    Article  MathSciNet  MATH  Google Scholar 

  • Atluri SN (2004) The meshless method (MLPG) for domain and BIE discretizations. Tech Science Press, Forsyth

    MATH  Google Scholar 

  • Atluri SN, Shen S (2002) The meshlesss local Peyrov-Galerkin (MLPG) method: a simple and less-costly alternative to the finite element and boundary element method. Comput Model Eng Sci 3:11–52

    MATH  Google Scholar 

  • Atluri SN, Zhu T (1998) A new meshless local Peyrov-Galerkin (MLPG) approach to nonlinear problems in computational modelling and simulation. Comput Model Simul Engng 3:187–196

    Google Scholar 

  • Atluri SN, Zhu T (1999) The meshlesss local Peyrov-Galerkin (MLPG) approach for solving problems in elasto-statics. Comput Mech 25:169–179

    Article  Google Scholar 

  • Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin method. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  • Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  MATH  Google Scholar 

  • Belytschko T, Tabarra M (1996) Dynamic fracture using element free Galerkin methods. Int J Numer Methods Eng 39:923–938

    Article  MATH  Google Scholar 

  • Cheng A (2000) Particular solutions of Laplacian, Helmholtz-type, and poly harmonic operators involving higher order radial basis functions. Eng Anal Bound Elem 24:531–538

    Article  MATH  Google Scholar 

  • Durbin F (1975) Numerical inversion of Laplace transforms: an efficient improvement to Dubner and Abate’s method. Comput J 17:371–376

    Article  MathSciNet  MATH  Google Scholar 

  • Godinho L, Amado-Mendes P, Carbajo J, Ramis-Soriano J (2015) 3D numerical modelling of acoustic horns using the method of fundamental solutions. Eng Anal Bound Elem 51:64–73

    Article  MathSciNet  Google Scholar 

  • Golberg MA, Chen CS (1998) The method of fundamental solutions for potential, Helmholtz and diffusion problems. In: Golberg MA (ed) Boundary integral methods-numerical and mathematical aspects. Computational Mechanics Publication, Southampton

    Google Scholar 

  • Hon YC, Wei T (2004) A fundamental solution method for inverse heat conduction problem. Eng Anal Bound Elem 28(6):489–495

    Article  MATH  Google Scholar 

  • Krysl P, Belytschko T (1996) Analysis of thin plates by the element-free Galerkin method. Comput Mech 17:26–35

    Article  MathSciNet  MATH  Google Scholar 

  • Krysl P, Belytschko T (1996) Analysis of thin shells by the element-free Galerkin method. Int J Solids Struct 33:3057–3080

    Article  MATH  Google Scholar 

  • Kythe PK (1996) Fundamental solutions for differential operators and applications. Boston, Birkhauser

  • Lee CY, Wang H, Qin QH (2015) Method of fundamental solutions for 3D elasticity with body forces by coupling compactly supported radial basis functions. Eng Anal Bound Elem 60:123–136

    Article  MathSciNet  Google Scholar 

  • Li M, Chen CS, Chu CC, Young DL (2014) Transient 3D heat conduction in functionally graded materials by the method of fundamental solutions. Eng Anal Bound Elem 45:62–67

    Article  MathSciNet  MATH  Google Scholar 

  • Li M, Monjiza A, Xu YG, Wen PH (2015) Finite block Petrov-Galerkin method in transient heat conduction. Eng Anal Bound Elem 60:106–114

    Article  MathSciNet  Google Scholar 

  • Lin J, Chen W, Sun L (2015) Simulation of elastic wave propagation in layered materials by the method of fundamental solutions. Eng Anal Bound Elem 57:88–95

    Article  MathSciNet  Google Scholar 

  • Liu GR (2009) Meshfree methods: moving beyond the finite element method, 2nd edn. CRC Press, Boca Raton

  • Liu YY, Belytschko T, Gu L (1994) A new implementation of the element free Galerkin method. Comput Meth Appl Mech Eng 113:397–414

    Article  MathSciNet  MATH  Google Scholar 

  • Liu QG, Šarler B (2014) Non-singular method of fundamental solutions for anisotropic elasticity. Eng Anal Bound Elem 45:68–78

    Article  MathSciNet  MATH  Google Scholar 

  • Li M, Wen PH (2014) Finite block method for transient heat conduction analysis in functionally graded media. Int J Numer Methods Eng 99:372–390

    Article  MathSciNet  MATH  Google Scholar 

  • Lucy L (1977) A numerical approach to testing the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  • Monaghan JJ (1988) An introduction to SPH. Comput Phys Commun 48:89–96

    Article  MATH  Google Scholar 

  • Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    Article  MATH  Google Scholar 

  • Randles PW, Libersky LD (1996) Smoothed particle hypodynamics: some recent improvements and application. Comput Meth Appl Mech Eng 139:375–408

    Article  MATH  Google Scholar 

  • Sladek J, Sladek V, Solek P (2009) Elastic analyses in 3D anisotropic functionally graded solids by the MLPG. Comput Model Eng Sci 43:223–251

    MATH  Google Scholar 

  • Sladek V, Sladek J, Zhang Ch (2010) On increasing computational efficiency of local integral equation method combined with meshless implementations. CMES 63:243–263

    MathSciNet  MATH  Google Scholar 

  • Sladek V, Sladek J (2010) Local integral equations implemented by MLS-approximation and analytical integrations. Eng Anal Bound Elem 34:904–13

    Article  MathSciNet  MATH  Google Scholar 

  • Sladek V, Sladek J, Tanaka M, Zhang Ch (2005) Local integral equation method for potential problems in functionally graded anisotropic materials. Eng Anal Bound Elem 29:829–843

  • Sladek V, Sladek J, Zhang Ch (2005) Local integro-differential equations with domain elements for the numerical solution of partial differential equations with variable coefficients. J Eng Math 51:261–282

  • Soares D Jr, Sladek V, Sladek J (2012) Modified meshless local Petrov-Galerkin formulations for elastodynamics. Int J Numer Methods Eng 90(14):1508–1528

    Article  MathSciNet  MATH  Google Scholar 

  • Stehfest H (1970) Algorithm 368: numerical inversion of Laplace transform. Comm Assoc Comput Math 13:47–49

    Google Scholar 

  • Wen PH, Cao P, Korakianitis T (2014) Finite block method in elasticity. Eng Anal Bound Elem 46:116–125

    Article  MathSciNet  MATH  Google Scholar 

  • Wen PH, Aliabadi MH (2011) A variational meshless method for mixed-mode fracture problems. Key Eng Mater 452–453:57–60

    Google Scholar 

Download references

Acknowledgments

The work of this paper was partially supported by a Grant from the National Youth Science Foundation of China (Grant No. 11401423).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Li.

Additional information

Communicated by Jorge X. Velasco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Dou, F.F., Korakianitis, T. et al. Boundary node Petrov–Galerkin method in solid structures. Comp. Appl. Math. 37, 135–159 (2018). https://doi.org/10.1007/s40314-016-0335-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40314-016-0335-7

Keywords

Navigation