Skip to main content
Log in

Predictive Control for Systems with Loss of Actuator Effectiveness Resulting from Degradation Effects

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

Predictive control is a promising strategy for the mitigation of faults that result in more stringent operational constraints on the inputs and outputs of a system. In this context, the present work proposes a predictive control approach for accommodation of faults associated with the loss of actuator effectiveness. More specifically, it is assumed that the actuator is subject to degradation effects with progress rate proportional to the control effort. The loss of effectiveness occurs when the degradation reaches an intermediate threshold between the nominal operating condition and the total failure of the actuator. The resulting predictive control law involves the solution of a mixed-integer programming problem to be solved at each sampling instant. By imposing a suitable terminal constraint, convergence to equilibrium and recursive feasibility of the input and state constraints are ensured, provided that the optimization problem is initially feasible. Simulation results are presented for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida, F. A., & Leissling, D. (2010). Fault-tolerant model predictive control with flight-test results. Journal of Guidance, Control, and Dynamics, 33(2), 363–375.

    Article  Google Scholar 

  • Barbosa, H. S., Galvão, R. K. H., & Yoneyama, T. (2012). Model predictive control of linear systems subject to actuator degradation. Control and Intelligent Systems, 40(4), 212–219.

    Article  MathSciNet  Google Scholar 

  • Bemporad, A., & Morari, M. (1999). Control of systems integrating logic, dynamics, and constraints. Automatica, 35(3), 407–427.

    Article  MATH  MathSciNet  Google Scholar 

  • Bizarria, C. O., & Yoneyama, T. (2009). Prognostics and health monitoring for an electro-hydraulic flight control actuator. In Proceedings of IEEE aerospace conference, Big Sky, USA.

  • Brown, D. W., Georgoulas, G., Bole, B., Pei, H. L., Orchard, M., Tang, L., Saha, B., Saxena, A., Goebel, K., & Vachtsevanos, G. (2009). Prognostics enhanced reconfigurable control of electro-mechanical actuators. In Proceedings of annual conference of the Prognostics and Health Management Society, San Diego, USA.

  • Franklin, G. F., Powell, J. D., & Workman, M. L. (1998). Digital control of dynamic systems (3rd ed.). Menlo Park: Addison-Wesley.

    Google Scholar 

  • Jiang, J., & Zhang, Y. (2002). Graceful performance degradation in active fault-tolerant control systems. In Proceedings of 15th IFAC World Congress, Barcelona, Spain.

  • Johansen, T. A. (2015). Toward dependable embedded model predictive control. IEEE Systems Journal. doi:10.1109/JSYST.2014.2368129

  • Kwon, W. H., & Han, S. (2005). Receding horizon control. London: Springer.

    Google Scholar 

  • Langeron, Y., Grall, A., & Barros, A. (2013). Actuator health prognosis for designing LQR control in feedback systems. Chemical Engineering Transactions, 33, 979–984.

    Google Scholar 

  • Li, D., Chen, T., Marquez, H. J., & Gooden, R. K. (2006). Life extending control of boiler–turbine systems via model predictive methods. Control Engineering Practice, 14(4), 319–326.

    Article  Google Scholar 

  • Maciejowski, J. M. (2002). Predictive control with constraints. Harlow: Prentice-Hall.

    Google Scholar 

  • Maciejowski, J. M., & Jones, C. N. (2003). MPC fault-tolerant flight control case study: Flight 1862. In Proceedings of IFAC symposium SAFEPROCESS, Washington, USA (pp. 119–124).

  • Mahulkar, V., Adams, D. E., & Derriso, M. (2009). Minimization of degradation through prognosis based control for a damaged aircraft actuator. In Proceedings of ASME dynamic systems and control conference, Hollywood, USA (pp. 669–676).

  • Pawlowski, A., Cervin, A., Guzmán, J. L., & Berenguel, M. (2014). Generalized predictive control with actuator deadband for event-based approaches. IEEE Transactions on Industrial Informatics, 10(1), 523–537.

    Article  Google Scholar 

  • Pereira, E. B., Galvão, R. K. H., & Yoneyama, T. (2010). Model predictive control using prognosis and health monitoring of actuators. In Proceedings of IEEE international symposium on industrial electronics, Bari, Italy (pp. 237–243).

  • Rao, V. G., & Bernstein, D. S. (2001). Naive control of the double integrator. IEEE Control Systems Magazine, 21(5), 86–97.

    Article  Google Scholar 

  • Rodrigues, L. R., Gomes, J. P. P., Ferri, F. A. S., Medeiros, I. P., Galvão, R. K. H., & Nascimento Júnior, C. L. (2015). Use of PHM information and system architecture for optimized aircraft maintenance planning. IEEE Systems Journal. doi:10.1109/jsyst.2014.2343752

  • Torrisi, F. D., & Bemporad, A. (2004). HYSDEL—A tool for generating computational hybrid models for analysis and synthesis problems. IEEE Transactions on Control Systems Technology, 12(2), 235–249.

    Article  MathSciNet  Google Scholar 

  • Vachtsevanos, G., Lewis, F. L., Roemer, M., & Hess, A. (2005). Intelligent fault diagnosis and prognosis for engineering systems. New York: Wiley.

    Google Scholar 

  • Vieira, J. P., Yoneyama, T., & Galvão, R. K. H. (2012). Reconfigurable predictive control for systems with actuator degradation: A hybrid system approach. In Proceedings of XIX Congresso Brasileiro de Automática, Campina Grande, PB, Brazil (pp. 3808–3815) (in Portuguese).

  • Zhang, J., Huang, X., & Cai, W. (2009). Research on prognostic and health monitoring system for large complex equipment. In Proceedings of IITA international conference on control, automation and systems engineering, Zhangjiajie, China.

Download references

Acknowledgments

Part of this work was carried out during the first author’s MSc program, which was funded by a scholarship from CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior). The authors also acknowledge the support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Research Fellowships), CAPES (PhD scholarship) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Grant 2011/17610-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Kawakami Harrop Galvão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, J.P., Galvão, R.K.H. & Yoneyama, T. Predictive Control for Systems with Loss of Actuator Effectiveness Resulting from Degradation Effects. J Control Autom Electr Syst 26, 589–598 (2015). https://doi.org/10.1007/s40313-015-0201-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-015-0201-7

Keywords

Navigation