Skip to main content
Log in

Differential Evolution Applied to DTC Drive for Three-Phase Induction Motors Using an Adaptive State Observer

  • Published:
Journal of Control, Automation and Electrical Systems Aims and scope Submit manuscript

Abstract

This paper describes an application of the metaheuristic differential evolution in the drive of three-phase induction motors based on direct torque control and employs a Luenberger observer to estimate the stator flux linkage and rotor speed. In this context, the differential evolution is applied to adjust the gains of the controllers involved in the direct torque control and speed observer estimation loop, as well as the observer matrix. Firstly a proportional-integral controller with anti-windup is considered in speed control loop, whose gains are adjusted empirically and optimally by DE. Furthermore, differential evolution is also considered for optimizing the Luenberger observer parameters for stator current and flux, as well as rotor speed estimation. Simulation tests are presented in order to prove the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • Alsofyani, I. M., & Idris, N. R. N. (2013). A review on sensorless techniques for sustainable reliablity and efficient variable frequency drives of induction motors. Renewable and Sustainable Energy Reviews, 24, 111–121.

    Article  MATH  Google Scholar 

  • Angélico, B. A., Campanhol, L. B. G., & Oliveira da Silva, S. A. (2014). Proportional-integral/proportional-integral-derivative tuning procedure of a single-phase shunt active power filter using Bode diagram. IET Power Electronics, 7(10), 2647–2659.

  • Azcue, J. L., & Ruppert, E. (2010). Three-phase induction motor DTC–SVM scheme with self-tuning pi-type fuzzy controller. In Seventh international conference on fuzzy systems and knowledge discovery (vol. 2, 757–762).

  • Badsi, E. B., Bouzidi, B., & Masmoudi, A. (2013). Bus-clamping-based DTC: An attempt to reduce harmonic distortion and switching losses. IEEE Transactions on Industrial Electronics, 60(3), 873–884.

    Article  Google Scholar 

  • Barut, M., Bogosyan, S., & Gokasan, M. (2005). Speed sensorless direct torque control of (IMs) with rotor resistance estimation. Energy Conversion and Management, 46(3), 335–349.

    Article  Google Scholar 

  • Bohn, C., & Atherton, D. P. (1995). An analysis package comparing PID anti-windup strategies. IEEE Control Systems, 15(2), 34–40.

    Article  Google Scholar 

  • Bose, B. K. (2002). Modern power electronics and AC drives. New Jersey: Prentice-Hall.

    Google Scholar 

  • Boussaïd, I., Lepagnot, J., & Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences, 237, 82–117.

    Article  MathSciNet  Google Scholar 

  • Branco, H. M. G. C., Barbosa, D., Oleskovicz, M., & Coury, D. V. (2013). Classification of events in power transformers using wavelet packet transform and fuzzy logic. Journal of Control, Automation and Electrical Systems, 24, 300–311.

    Article  Google Scholar 

  • Buja, G., & Kazmierkowski, M. (2004). Direct torque control of PWM inverter-fed AC motors: A survey. IEEE Transactions on Industrial Electronics, 51(4), 744–757.

    Article  Google Scholar 

  • Buja, G., Casadei, D., & Serra, G. (1997). DTC-based strategies for induction motor drives. In 23rd international conference on industrial electronics, control and instrumentation (vol. 4, pp. 1506–1516).

  • Cao, C., Zhou, B., Li, M., & Du, J. (2006). Digital implementation of DTC based on PSO for induction motors. The Sixth World Congress on Intelligent Control and Automation, 2, 6349–6352.

    Google Scholar 

  • Chan, T., & Shi, K. (2011). Applied intelligent control of induction motor drives. Singapore: Wiley.

    Book  Google Scholar 

  • Choi, Y. O., Lee, W. S., Seo, K. S., Kim, G. B., Jung, B. H., Cho, G. B., et al. (2001). Performance analysis of the DTC using a closed loop stator flux observer for induction motor in the low speed range. In Proceedings of the fifth international conference on electrical machines and systems (vol. 1, pp. 89–93).

  • Hinkkanen, M., & Luomi, J. (2001). Modified integrator for voltage model flux estimation of induction motors. In The 27th annual conference of the IEEE industrial electronics society (vol 2. pp 1339–1343).

  • Hurst, K. D., Habetler, T. G., Griva, G., & Profumo, F. (1998). Zero-speed tacholess im torque control: Simply a matter of stator voltage integration. IEEE Transactions on Industry Applications, 34(4), 790–795.

    Article  Google Scholar 

  • IEEE (2004). IEEE Std. 112—Standard test procedure for polyphase induction motors and generators. New York: IEEE Press.

  • Kulworawanichpong, T. (2009). Optimizing an extended luenberger speed observer for single-phase induction motor drives based on genetic algorithms. In 35th annual conference of IEEE industrial electronics (pp. 3289–3294).

  • Lins, Z.D. (2001). Controle direto de torque para motores de indução - estudo e implementação (in portuguese). PhD thesis, State University of Campinas, Campinas, Brazil.

  • Luo, H., Lv, Y., Deng, X., & Zhang, H. (2009). Optimization of adaptation gains of full-order flux observer in sensorless induction motor drives using genetic algorithm. Information Technology Journal, 8(4), 577–582.

  • Miao, J. L., Li, Q. M. (2014). A new anti-windup PI controller for direct torque control system. TELKOMNIKA Indonesian Journal of Electrical Engineering, 12(7), 5268–5274.

  • Palácios, R. H. C., Silva, I. N., Goedtel, A., Godoy, W. F., & Oleskovicz, M. (2014). A robust neural method to estimate torque in three-phase induction motor. Journal of Control, Automation and Electrical Systems, 25, 493–502.

    Google Scholar 

  • Pan, F., Han, R., & Zhang, R. (2009). An optimal controller based-on ga for direct torque control. In 3rd international conference on genetic and evolutionary computing (pp 52–55).

  • Pandian, G., & Reddy, S. R. (2008). Modified kalman filter based direct torque control of induction motor for ripple free torque and flux estimation. In International conference on electrical and computer engineering (ICECE) (pp. 539–544).

  • Prabu, T., Sampathkumar, S., & Gunabalan, R. (2011). Advanced direct torque control of induction motor. In International conference on process automation, control and computing (pp. 1–6).

  • Qing, A. (2009). Differential evolution: Fundamentals and applications in electrical engineering. London: Wiley.

    Book  Google Scholar 

  • Santos, T. H., Goedtel, A., Silva, S. A. O., & Suetake, M. (2014). Scalar control of an induction motor using a neural sensorless technique. Electric Power Systems Research, 108, 322–330.

    Article  Google Scholar 

  • Satheesh, G., Bramhananda Reddy, T., & SaiBabu, C. (2014). A family of random PWM algorithms for reduction of torque ripple and current harmonics of direct torque controlled open end winding induction motor. Journal of Control, Automation and Electrical Systems, 25, 349–357.

    Article  Google Scholar 

  • Storn, R., & Price, K. (1997). Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11(4), 341–359.

    Article  MathSciNet  MATH  Google Scholar 

  • Sutikno, T., Idris, N. R. N., & Jidin, A. (2014). A review of direct torque control of induction motors for sustainable reliability and energy efficient drives. Renewable and Sustainable Energy Reviews, 32, 548–558.

    Article  Google Scholar 

  • Taheri, A., Rahmati, A., & Kaboli, S. (2012). Efficiency improvement in DTC of six-phase induction machine by adaptive gradient descent of flux. IEEE Transactions on Power Electronics, 27(3), 1552–1562.

    Article  Google Scholar 

  • Takahashi, I., & Noguchi, T. (1986). A new quick-response and high-efficiency control strategy of an induction motor. IEEE Transactions on Industry Applications, IA–22(5), 820–827.

    Article  Google Scholar 

  • Talbi, E. G. (2009). Metaheuristics. Hoboken: Wiley.

    Book  MATH  Google Scholar 

  • Uddin, M. N., Hafeez, M., Rahim, N. A. (2011). Self-tuned NFC and adaptive torque hysteresis based DTC scheme for IM drive. In IEEE industry applications society annual meeting (pp. 1–8).

  • Valdenebro, L. R. (2001). Observadores adaptativos de fluxo e velocidade para motores de indução - estudo e implementação (in portuguese). PhD thesis, State University of Campinas, Campinas, Brazil.

  • Vas, P. (1998). Sensorless vector and direct torque control. New York: Oxford University Press.

    Google Scholar 

  • Zhang, D., Li, H., & Collins, E. G. (2006). Digital anti-windup PI controllers for variable-speed motor drives using FPGA and stochastic theory. IEEE Transactions on Power Electronics, 21(5), 1496–1501.

    Article  Google Scholar 

  • Zhou, B., & Jing, X. (2008). Application of particle swarm optimization on DTC for induction motors. In Fourth international conference on natural computation (vol. 4, pp. 472–476).

  • Zorgani, Y. A., Koubaa, Y., & Boussak, M. (2012). Sensorless speed control with MRAS for induction motor drive. In XXth international conference on electrical machines (pp 2259–2265).

Download references

Acknowledgments

To the financial support from CNPq (Process 474290/2008-5, 473576/2011-2,552269/2011-5) and Araucária Foundation (Process 06/56093-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Goedtel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, B.L.G., Angélico, B.A., Goedtel, A. et al. Differential Evolution Applied to DTC Drive for Three-Phase Induction Motors Using an Adaptive State Observer. J Control Autom Electr Syst 26, 403–420 (2015). https://doi.org/10.1007/s40313-015-0188-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40313-015-0188-0

Keywords

Navigation