Skip to main content
Log in

Role of the Sympathetic Nervous System in Hypertension and Hypertension-Related Cardiovascular Disease

  • Review Article
  • Published:
High Blood Pressure & Cardiovascular Prevention Aims and scope Submit manuscript

Abstract

A number of cardiovascular disease have been shown to be characterized by a marked increase in sympathetic drive to the heart and the peripheral circulation. This is the case for essential hypertension, congestive heart failure, cardiac arrhythmias, obesity, metabolic syndrome, obstructive sleep apnea, and chronic renal disease. This review focuses on the most recent findings documenting the role of sympathetic neural factors in the development and progression of the hypertensive state as well as in the pathogenesis of hypertension-related target organ damage. It also reviews the role of sympathetic neural factors in the development of cardiovascular diseases not necessarily strictly related to the hypertensive state, such as congestive heart failure, cardiac arrhythmias, obesity, metabolic syndrome and renal failure. The paper will finally review the pharmacological and non-pharmacological interventions acting on the sympathetic drive. Emphasis will be given to the new approaches, such as renal nerves ablation and carotid baroreceptor stimulation, which have been shown to exert sympathoinhibitory effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hamill RW, Shapiro RE, Vizzard MA. Peripheral autonomic nervous system, chap. 4. In: Robertson D, Biaggioni I, Burnstock G, Low PA, Paton JFR, editors. Primer on the autonomic nervous system. London: Academic Press; 2012. p. 17–26.

    Google Scholar 

  2. Vallbo AB, Hagbarth KE, Wallin BG. Microneurography: how the technique developed and its role in the investigation of the sympathetic nervous system. J Appl Physiol. 2004;96:1262–9.

    PubMed  Google Scholar 

  3. Wallin BG, Charkoudian N. Sympathetic neural control of integrated cardiovascular function: insights from measurement of human sympathetic nerve activity. Muscle Nerve. 2007;36:595–614.

    CAS  PubMed  Google Scholar 

  4. Grassi G, Esler M. How to assess sympathetic activity in humans. J Hypertens. 1999;17:719–34.

    CAS  PubMed  Google Scholar 

  5. Grassi G, Cattaneo BM, Seravalle G, Lanfranchi A, Mancia G. Baroreflex control of sympathetic nerve activity in essential and secondary hypertension. Hypertension. 1998;31:68–72.

    CAS  PubMed  Google Scholar 

  6. Mark AL. The sympathetic nervous system in hypertension: a potential long-term regulator of arterial pressure. J Hypertens. 1996;14(Suppl):s159–65.

    CAS  Google Scholar 

  7. Grassi G, Bolla G, Seravalle G, Turri C, Lanfranchi A, Mancia G. Comparison between reproducibility and sensitivity of muscle sympathetic nerve traffic and plasma noradrenaline in man. Clin Sci. 1997;92:285–9.

    CAS  PubMed  Google Scholar 

  8. Grassi G, Bolla G, Quarti-Trevano F, Arenare F, Brambilla G, Mancia G. Sympathetic activation in congestive heart failure: reproducibility of neuroadrenergic markers. Eur J Heart Fail. 2008;10:1186–91.

    CAS  PubMed  Google Scholar 

  9. Grassi G, Seravalle G, Dell’Oro R, Arenare F, Facchetti R, Mancia G. Reproducibility patterns of plasma norepinephrine and muscle sympathetic nerve traffic in human obesity. Nutr Metab Cardiovasc Dis. 2009;19:469–75.

    CAS  PubMed  Google Scholar 

  10. Wallin BG, Esler M, Dorward P, Eisenhofer G, Ferrier C, Westerman R, Jennings G. Simultaneous measurements of cardiac noradrenaline spillover and sympathetic outflow to skeletal muscle in humans. J Physiol (Lond). 1992;453:45–58.

    CAS  Google Scholar 

  11. Wallin BG, Thompson JM, Jennings G, Esler MD. Renal noradrenaline spillover correlates with muscle sympathetic activity in humans. J Physiol (Lond). 1996;491:881–7.

    CAS  Google Scholar 

  12. Esler M, Ferrier C, Lambert G, Eisenhofer G, Cox H, Jennings G. Biochemical evidence of sympathetic hyperactivity in human hypertension. Hypertension. 1991;17(Suppl II):29–35.

    Google Scholar 

  13. Eisenhofer G, Esler MD, Goldstein DS, Kopin IJ. Neuronal uptake, metabolism, and release of tritium-labeled norepinephrine during assessment of its plasma kinetics. Am J Physiol Endocrinol Metab. 1991;261:E505–15.

    CAS  Google Scholar 

  14. Grassi G. Assessment of sympathetic cardiovascular drive in human hypertension: achievements and perspectives. Hypertension. 2009;54:690–7.

    CAS  PubMed  Google Scholar 

  15. Axelrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. Hemodynamic regulation: investigation by spectral analysis. Am J Physiol. 1985;249:H867–75.

    Google Scholar 

  16. Julius S, Krause L, Schork NJ, Mejia AD, Jones KA, van de Ven C, Johnson EH, Sekkarie MA, Kjeldsen SE, Petrin J. Hyperkinetic borderline hypertension in Tecumseh, Michigan. J Hypertens. 1991;9:77–84.

    CAS  PubMed  Google Scholar 

  17. Anderson EA, Sinkey CA, Lawton WJ, Mark AL. Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension. 1989;14:177–83.

    CAS  PubMed  Google Scholar 

  18. Floras JS, Hara K. Sympathoneural and haemodynamic characteristics of young subjects with mild essential hypertension. J Hypertens. 1993;11:647–55.

    CAS  PubMed  Google Scholar 

  19. Seravalle G, Quarti-Trevano F, Dell’Oro R, Arenare F, Brambilla G, Bombelli M, Mancia G, Grassi G. Sympathetic, baroreflex and metabolic abnormalities in the optimal, normal and high-normal blood pressure state [abstr]. J Hypertens. 2010;28(Suppl A):e437.

    Google Scholar 

  20. Esler M, Lambert G, Jennings G. Regional norepinephrine turnover in human hypertension. Clin Exp Hypertens. 1989;11(Suppl 1):75–89.

    Google Scholar 

  21. Palatini P, Dorigatti F, Zaetta V, Mormino P, Mazzer A, Bortolazzi A, D’Este D, Pegoraro F, Milani L, Mos L, HARVEST Study Group. Heart rate as a predictor of development of sustained hypertension in subjects screened for stage 1 hypertension: the HARVEST Study. J Hypertens. 2006;24:1873–80.

    CAS  PubMed  Google Scholar 

  22. Flaa A, Eide IK, Kjeldsen SE, Rostrup M. Sympathoadrenal stress reactivity is a predictor of future blood pressure: an 18-year follow-up study. Hypertension. 2008;52:336–41.

    CAS  PubMed  Google Scholar 

  23. Yamada Y, Miyajima E, Tochikubo O, Matsukawa T, Shionoiri H, Ishii M, Kaneko Y. Impaired baroreflex changes in muscle sympathetic nerve activity in adolescent who have a family history of essential hypertension. J Hypertens. 1988;6(Suppl):s525–8.

    CAS  Google Scholar 

  24. Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH, Cameron GS, Astruc B, Mayer JP, Brage S, See TC, Lomas DJ, O’Rahilly S, Farooqi IS. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med. 2009;360:44–52.

    CAS  PubMed  Google Scholar 

  25. Beetz N, Harrison MD, Brede M, Zong X, Urbanski MJ, Sietmann A, Kaufling J, Barrot M, Seelinger MW, Vieira-Coelho MA, Hamet P, Gaudet D, Seda O, Tremblay J, Kotchen TA, Kaldunski M, Nusing R, Szabo B, Jacob HJ, Cowley AE Jr, Biel M, Stoll M, Lohse MJ, Broekel U, Hein L. Phosducin influences sympathetic activity and prevents stress-induced hypertension in humans and mice. J Clin Invest. 2009;119:3597–612.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Grassi G, Padmanabhan S, Menni C, Seravalle G, Lee WK, Bombelli M, Brambilla G, Giannattasio C, Cesana A, Dominiczak A, Mancia G. Association between ADRA1A gene and the metabolic syndrome: candidate genes and functional counterpart in the PAMELA population. J Hypertens. 2011;29:1121–7.

    CAS  PubMed  Google Scholar 

  27. Grassi G, Seravalle G, Mancia G. Left ventricular hypertrophy and sympathetic activity. Adv Exp Med Biol. 1997;432:173–9.

    CAS  PubMed  Google Scholar 

  28. Greenwood JP, Scott EM, Stoker JB, Mary DA. Hypertensive left ventricular hypertrophy: relation to peripheral sympathetic drive. J Am Coll Cardiol. 2001;38:1711–7.

    CAS  PubMed  Google Scholar 

  29. Schlaich MP, Kaye DM, Lambert E, Sommerville M, Socratous F, Esler MD. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108:560–5.

    PubMed  Google Scholar 

  30. Burns J, Sivananthan MU, Ball SG, Mackintosh AF, Mary DA, Greenwood JP. Relationship between central sympathetic drive and magnetic resonance imaging-determined left ventricular mass in essential hypertension. Circulation. 2007;115:1999–2005.

    PubMed Central  PubMed  Google Scholar 

  31. Palatini P, Majahalme S, Amerena J, Nesbitt S, Vriz O, Michieletto M, Krause L, Julius S. Determinants of left ventricular structure and mass in young subjects with sympathetic overactivity. The Tecumseh Offspring Study. J Hypertens. 2000;18:769–75.

    CAS  PubMed  Google Scholar 

  32. Strand AH, Gudmundsdottir H, Os I, Smith G, Westheim AS, Biorneheim R, Kjeldsen SE. Arterial plasma noradrenaline predicts left ventricular mass independently of blood pressure and body build in men who develop hypertension over 20 years. J Hypertens. 2006;24:905–13.

    CAS  PubMed  Google Scholar 

  33. Strand AH, Gudmundsdottir H, Fussum E, Os I, Biornerheim R, Kjeldsen SE. Arterial plasma vasopressin and aldosterone predict left ventricular mass in men who develop hypertension over 20 years. J Clin Hypertens (Greenwich). 2007;9:365–71.

    CAS  Google Scholar 

  34. Chalothorn D, Zhang H, Clayton JA, Thomas SA, Faber JE. Catecholamines augment collateral vessel growth and angiogenesis in hindlimb ischemia. Am J Physiol Heart Circ Physiol. 2005;289:H947–59.

    CAS  PubMed  Google Scholar 

  35. Zukowska Z. Atherosclerosis and angiogenesis: what do nerves have to do with it? Pharmacol Rep. 2005;57:229–34.

    PubMed  Google Scholar 

  36. Delacretaz E, Hayoz D, Hutter D, Allermann Y. Radial artery compliance in response to mental stress in normotensive offspring of hypertensive parents. Clin Exp Hypertens. 2001;23:545–53.

    CAS  PubMed  Google Scholar 

  37. Lambert E, Sari CL, Dawood T, Nguyen J, McGrane M, Eikelis N, Chopra R, Wong C, Chatzivlastou K, Head G, Straznicky N, Esler M, Schlaich M, Lambert G. Sympathetic nervous system activity is associated with obesity-induced subclinical organ damage in young adults. Hypertension. 2010;56:351–8.

    CAS  PubMed  Google Scholar 

  38. Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R, Arenare F, Spaziani D, Mancia G. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension. 2009;53:205–9.

    CAS  PubMed  Google Scholar 

  39. Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, Dietl KH, Rahn KH. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106:1974–9.

    PubMed  Google Scholar 

  40. Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, Dell’Oro R, Mancia G. Early sympathetic activation in the initial stages of chronic renal failure. Hypertension. 2011;57:846–51.

    CAS  PubMed  Google Scholar 

  41. Grassi G, Seravalle G, Ghiadoni L, Tripepi G, Bruno RM, Mancia G, Zoccali C. Sympathetic nerve traffic and asymmetric dimethylarginine in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:2620–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Grassi G, Seravalle G, Cattaneo BM, Bolla GB, Lanfranchi A, Colombo M, Giannattasio C, Brunani A, Cavagninini F, Mancia G. Sympathetic activation in obese normotensive subjects. Hypertension. 1995;25:560–3.

    CAS  PubMed  Google Scholar 

  43. Vaz M, Jennings G, Turner A, Cox H, Lambert G, Esler M. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation. 1997;96:3423–9.

    CAS  PubMed  Google Scholar 

  44. Grassi G, Dell’Oro R, Facchini A, Quarti-Trevano F, Bolla GB, Mancia G. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J Hypertens. 2004;22:2363–9.

    CAS  PubMed  Google Scholar 

  45. Alvarez GE, Ballard TP, Beske SD, Davy KP. Subcutaneous obesity is not associated with sympathetic neural activation. Am J Physiol Heart Circ Physiol. 2004;287:H414–8.

    CAS  PubMed  Google Scholar 

  46. Landsberg L. Insulin-mediated sympathetic stimulation: role in the pathogenesis of obesity-related hypertension (or, how insulin affects blood pressure, and why). J Hypertens. 2001;19:523–8.

    CAS  PubMed  Google Scholar 

  47. Masuo K, Mikami H, Ogihara T, Tuck ML. Sympathetic nerve hyperactivity precedes hyperinsulinemia and blood pressure elevation in a young, nonobese Japanese population. Am J Hypertens. 1997;10:77–83.

    CAS  PubMed  Google Scholar 

  48. Huggett RJ, Scott EM, Gilbey SG, Stoker JB, Mackintosh AF, Mary DA. Impact of type 2 diabetes mellitus on sympathetic neural mechanisms in hypertension. Circulation. 2003;108:3097–101.

    CAS  PubMed  Google Scholar 

  49. Grassi G, Dell’Oro R, Quarti-Trevano F, Scopelliti F, Seravalle G, Paleari F, Gamba PL, Mancia G. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia. 2005;48:1359–65.

    CAS  PubMed  Google Scholar 

  50. Narkiewicz K, van de Borne PJ, Cooley RL, Dyken ME, Somers VK. Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation. 1998;98:772–6.

    CAS  PubMed  Google Scholar 

  51. Grassi G, Facchini A, Quarti-Trevano F, Dell’Oro R, Arenare F, Tana F, Bolla G, Monzani A, Robuschi M, Mancia G. Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity. Hypertension. 2005;46:321–5.

    CAS  PubMed  Google Scholar 

  52. Grassi G, Seravalle G, Quarti-Trevano F, Mineo C, Lonati L, Facchetti R, Mancia G. Reinforcement of the adrenergic overdrive in the metabolic syndrome complicated by obstructive sleep apnea. J Hypertens. 2010;28:1313–20.

    CAS  PubMed  Google Scholar 

  53. Videbaek J, Christensen NJ, Sterndorff B. Serial determination of plasma catecholamines in myocardial infarction. Circulation. 1972;46:846–55.

    CAS  PubMed  Google Scholar 

  54. Sander D, Klingerhofer J. Stroke-associated pathological sympathetic activation as related to size of infarction and extent of insular damage. Cerebrovasc Dis. 1995;5:381–5.

    Google Scholar 

  55. Thomas JA, Marks BH. Plasma norepinephrine in congestive heart failure. Am J Cardiol. 1978;41:233–43.

    CAS  PubMed  Google Scholar 

  56. Cohn J, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311:819–23.

    CAS  PubMed  Google Scholar 

  57. Rouleau JL, Packer M, Moye L, de Champlain J, Bichet D, Klein M, Rouleau JR, Sussex B, Arnold JM, Sestier F. Prognostic value of neurohumoral activation in patients with an acute myocardial infarction: effect of captopril. J Am Coll Cardiol. 1994;24:583–91.

    CAS  PubMed  Google Scholar 

  58. Sander D, Winbeck K, Klingelhofer J, Etgen T, Conrad B. Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology. 2001;57:833–8.

    CAS  PubMed  Google Scholar 

  59. Leimbach WN Jr, Wallin BG, Victor RG, Aylward PE, Sundlof G, Mark AL. Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation. 1986;73:913–9.

    PubMed  Google Scholar 

  60. Grassi G, Seravalle G, Cattaneo BM, Lanfranchi A, Vailati S, Giannattasio C, Del Bo A, Sala C, Bolla GB, Pozzi M, Mancia G. Sympathetic activation and loss of reflex sympathetic control in mild congestive heart failure. Circulation. 1995;92:3206–11.

    CAS  PubMed  Google Scholar 

  61. Grassi G, Seravalle G, Quarti-Trevano F, Dell’Oro R, Bolla G, Mancia G. Effects of hypertension and obesity on the sympathetic activation of heart failure patients. Hypertension. 2003;42:873–7.

    CAS  PubMed  Google Scholar 

  62. Spaak J, Egri ZJ, Kubo T, Yu E, Ando S, Kaneko Y, Usui K, Bradley TD, Floras JS. Muscle sympathetic nerve activity during wakefulness in heart failure patients with and without sleep apnea. Hypertension. 2005;46:1327–32.

    CAS  PubMed  Google Scholar 

  63. Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PI. Norepinephrine spillover to plasma in patients with congestive heart failure evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615–21.

    CAS  PubMed  Google Scholar 

  64. Van der Linde NA, Boomsma F, van den Meiracker AH. Role of nitric oxide in modulating systemic pressor responses to different vasoconstrictors in man. J Hypertens. 2005;23:1009–15.

    PubMed  Google Scholar 

  65. Patel KP, Li HF, Hirooka Y. Role of nitric oxide in central sympathetic outflow. Exp Biol Med. 2001;226:814–24.

    CAS  Google Scholar 

  66. Sakuma I, Togashi H, Yoshioka M, Saito H, Yanagida M, Tamura M, Kobayashi T, Yasuda H, Gross SS, Levi R. NG-methyl l-arginine-derived nitric oxide synthesis stimulates renal sympathetic nerve activity in vitro. A role for nitric oxide in the central regulation of sympathetic tone. Circ Res. 1992;70:607–11.

    CAS  PubMed  Google Scholar 

  67. Grassi G, Seravalle G, Bertinieri G, Mancia G. Behaviour of the adrenergic cardiovascular drive in atrial fibrillation and cardiac arrhythmias. Acta Physiol Scand. 2003;177:399–404.

    CAS  PubMed  Google Scholar 

  68. Brunner-La Rocca HP, Esler MD, Jennings GL, Kaye D. Effects of cardiac symapthetic nervous activity on mode of death in congestive heart failure. Eur Heart J. 2001;22:1136–43.

    CAS  PubMed  Google Scholar 

  69. Bradley TD, Floras JS. Obstructive sleep apnoea and its cardiovascular consequences. Lancet. 2009;37:82–3.

    Google Scholar 

  70. Kasai T, Floras JS, Bradley TD. Sleep apnea and cardiovascular disease: a bidirectional relationship. Circulation. 2012;126:1495–510.

    PubMed  Google Scholar 

  71. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Floras JS, Hunt CE, Olson LJ, Pickering TG, Russell R, Woo M, Young T. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation scientific statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. Circulation. 2008;118:1080–111.

    PubMed  Google Scholar 

  72. Budhiraja R, Parthasarathy S, Quan SF. Endothelial dysfunction in obstructive sleep apnea. J Clin Sleep Med. 2007;3:409–15.

    PubMed Central  PubMed  Google Scholar 

  73. Garvey JF, Taylor CT, McNicholas WT. Cardiovascular disease in obstructive sleep apnea syndrome: the role of intermittent hypoxia and inflammation. Eur Respir J. 2009;33:1195–205.

    CAS  PubMed  Google Scholar 

  74. Carlson JT, Rangemark C, Hedner JA. Attenuated endothelium-dependent vascular relaxation in patients with sleep apnoea. J Hypertens. 1996;14:577–84.

    CAS  PubMed  Google Scholar 

  75. Zhang XL, Yin KS, Mao H, Wang H, Yang Y. Effect of continuous positive airway pressure treatment on vascular endothelial function in patients with obstructive sleep apnea hypopnea syndrome and coronary artery disease. Chin Med J (Engl). 2004;117:844–7.

    Google Scholar 

  76. Drager LF, Bortolotto LA, Figueiredo AC, Krieger EM, Lorenzi-Filho G. Effects of continuous positive airway pressure on early signs of atherosclerosis in obstructive sleep apnea. Am J Respir Crit Care Med. 2007;176:706–12.

    CAS  PubMed  Google Scholar 

  77. Gottlieb DJ, Yenokyan G, Newman AB, O’Connor GT, Punjabi NM, Quan SF, Redline S, Resnick HE, Tong EK, Diener-West M, Shahar E. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the Sleep Heart Health Study. Circulation. 2010;122:352–60.

    PubMed Central  PubMed  Google Scholar 

  78. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342:1378–84.

    CAS  PubMed  Google Scholar 

  79. Ancoli-Israel S, Stepnowsky C, Dimsdale J, Marler M, Cohen-Zin M, Johnson S. The effect of race and sleep-disordered breathing on nocturnal BP “dipping” analysis in an older population. Chest. 2002;122:1148–55.

    PubMed  Google Scholar 

  80. Cano-Pumarega I, Duran-Cantolla J, Aizpuru F, Miranda-Serrano E, Rubio R, Martinez-Null C, de Miguel J, Egea C, Cancelo L, Alvarez A, Fernandez-Bolanos M, Barbé F. Obstructive sleep apnea and systemic hypertension: longitudinal study in the general population. Am J Respir Crit Care Med. 2011;184:1299–304.

    PubMed  Google Scholar 

  81. Calhoun DA, Jones D, Textor S, Goff DC, Murohy TP, Toto RD, White W, Sica D, Ferdinand K, Giles TD, Falkner B, Carey RM. Resistant hypertension: diagnosis, evaluation, and treatment: a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Circulation. 2008;117:e510–26.

    PubMed  Google Scholar 

  82. Grote L, Hedner J, Peter JH. Sleep-related breathing disorder is an independent risk factor for uncontrolled hypertension. J Hypertens. 2000;18:679–85.

    CAS  PubMed  Google Scholar 

  83. Lavie P, Hoffstein V. Sleep apnea syndrome: a possible contributing factor to resistant hypertension. Sleep. 2001;24:721–5.

    CAS  PubMed  Google Scholar 

  84. Pratt-Ubunama MN, Nishizaka MK, Boedefeld RL, Cofield SS, Harding SM, Calhoun DA. Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension. Chest. 2007;131:453–9.

    CAS  PubMed  Google Scholar 

  85. Zoccali C, Mallamaci F, Parlongo S, Cutrupi S, Benedetto FA, Tripepi G, Bonanno G, Rapisarda F, Fantuzzo P, Seminara G, Cataliotti A, Stancanelli B, Malatino LS. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation. 2002;105:1354–9.

    CAS  PubMed  Google Scholar 

  86. Schlaich MP, Socratous F, Hennebry S, Eikelis N, Lambert EA, Straznicky N, Esler MD, Lambert GW. Sympathetic activation in chronic renal failure. J Am Soc Nephrol. 2009;20:933–9.

    PubMed  Google Scholar 

  87. Siddiqi L, Prakken NH, Velthuis BK, Cramer MJ, Oey PL, Boer P, Bots ML, Blankestijn PJ. Sympathetic activity in chronic kidney disease patients is related to left ventricular mass despite antihypertensive treatment. Nephrol Dial Transplant. 2010;25:3272–7.

    PubMed  Google Scholar 

  88. Palatini P, Dorigatti F, Saladini F, Benetti E, Mos L, Mazzer A, Zanata G, Garavelli G, Casiglia E. Factors associated with glomerular hyperfiltration in the early stage of hypertension. Am J Hypertens. 2012;25:1011–6.

    CAS  PubMed  Google Scholar 

  89. Grassi G. Sympathetic neural activity in hypertension and related diseases. Am J Hypertens. 2010;23:1052–60.

    PubMed  Google Scholar 

  90. Sibal L, Agarwal SC, Home PD, Boger RH. The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev. 2010;6:82–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Bruno RM, Sudano I, Ghiadoni L, Masi L, Taddei S. Interactions between sympathetic nervous system and endogenous endothelin in patients with essential hypertension. Hypertension. 2011;57:79–84.

    CAS  PubMed  Google Scholar 

  92. Liu JL, Zucker IH. Regulation of sympathetic nerve activity in heart failure: a role of nitric oxide and angiotensin II. Circ Res. 1999;84:417–23.

    CAS  PubMed  Google Scholar 

  93. Bagnall NM, Dent PC, Walkowska A, Sadowski J, Johns EJ. Nitric oxide inhibition and the impact of renal nerve-mediated antinatriuresis and antidiuresis in the anaesthetized rat. J Physiol. 2005;569:849–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Broere A, van den Meiracker AH, Boomsma F, Derkx FH, Veld AJ, Schalekamp MA. Human renal and systemic hemodynamic, natriuretic, and neurohumoral responses to different doses of L-NAME. Am J Physiol. 1998;275:F870–7.

    CAS  PubMed  Google Scholar 

  95. Ben Cheikh R, Feray JC, Alaoui A, Crotazier B. Thromboxane A2 in vasomotor effects of phenylephrine, acetylcholine, and bradykinin in rat mesenteric bed. J Cardiovasc Pharmacol. 2002;40:255–64.

    CAS  PubMed  Google Scholar 

  96. van der Linde NA, Boomsma F, van den Meiracker AH. Potentiation of LNAME-induced systemic and renal vasoconstrictor responses by alpha1-adrenoceptor antagonism. J Hypertens. 2005;23:1017–24.

    PubMed  Google Scholar 

  97. Joyner MJ, Charkoudian N, Wallin BG. Sympathetic nervous system and blood pressure in humans: individualized patterns of regulation and their implications. Hypertension. 2010;56:10–6.

    CAS  PubMed  Google Scholar 

  98. Park J, Campese VM, Nobakht N, Middlekauff HR. Differential distribution of muscle and skin sympathetic nerve activity in patients with end-stage renal disease. J Appl Physiol. 2008;105:1873–6.

    PubMed Central  PubMed  Google Scholar 

  99. Grassi G, Seravalle G, Arenare F, Buccianti G, Furiani S, Ilardo V, Bolla GB, Mancia G. Behaviour of regional adrenergic outflow in mild-to-moderate renal failure. J Hypertens. 2009;27:562–6.

    CAS  PubMed  Google Scholar 

  100. Morrissey DM, Brookes VS, Cooke WT. Sympathectomy in the treatment of hypertension: review of 122 cases. Lancet. 1953;1:403–8.

    CAS  PubMed  Google Scholar 

  101. Smithwick RH, Thompson JE. Splachnicectomy for essential hypertension: results in 1266 cases. JAMA. 1953;152:1501–4.

    CAS  Google Scholar 

  102. Grassi G. Counteracting the sympathetic nervous system in essential hypertension. Curr Opin Nephrol Hypertens. 2004;13:513–9.

    PubMed  Google Scholar 

  103. Bilgutay AM, Lillehei CW. Treatment of hypertension with an implantable electronic device. JAMA. 1965;191:113–7.

    Google Scholar 

  104. Floras JS. Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol. 2009;54:375–85.

    CAS  PubMed  Google Scholar 

  105. Grassi G, Seravalle G, Bertinieri G, Turri C, Dell’Oro R, Stella ML, Mancia G. Sympathetic and reflex alterations in systodiastolic and systolic hypertension of the elderly. J Hypertens. 2000;18:587–94.

    CAS  PubMed  Google Scholar 

  106. Seravalle G, Volpe M, Ganz F, Magni L, Brambilla G, Dell’Oro R, Muraro S, Bombelli M, Mancia G, Grassi G. Neuroadrenergic profile in patients with resistant hypertension [abstr]. J Hypertens. 2011;29(Suppl A):e141.

    Google Scholar 

  107. DiBona GF, Esler MD. Translational medicine: the antihypertensive effect of renal denervation. Am J Physiol Regul Integr Comp Physiol. 2010;298:R245–53.

    CAS  PubMed  Google Scholar 

  108. Stella A, Zanchetti A. Interactions between the sympathetic nervous system and the kidney: experimental observations. J Hypertens. 1985;3:s19–25.

    CAS  Google Scholar 

  109. Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M. Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet. 2009;373:1275–81.

    PubMed  Google Scholar 

  110. Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M. Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomized control trial. Lancet. 2010;376:1903–9.

    PubMed  Google Scholar 

  111. Krum H, Schlaich MP, Böhm M, Mahfoud F, Rocha-Singh K, Katholi R, Esler MD. percutaneous renal denervation in patients with treatment resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet. 2014 (in press).

  112. Kandzari DE, Bhatt DL, Sobotka PA, O’Neill WW, Esler M, Flack JM, Katzen BT, Leon MB, Massaro JM, Negoita M, Oparil S, Rocha-Singh K, Straley C, Townsend RR, Bakris G. Catheter-based renal denervation for resistant hypertension: rationale and design of the Symplicity HTN-3 Trial. Clin Cardiol. 2012;35(9):528–35.

    PubMed  Google Scholar 

  113. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic-nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361:932–4.

    CAS  PubMed  Google Scholar 

  114. Mahfoud F, Schlaich M, Kindermann I, Ukena C, Cremers B, Brandt MC, Hoppe UC, Vonend O, Rump LC, Sobotka PA, Krum H, Esler M, Bohm M. Effects of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation. 2011;123:1940–6.

    CAS  PubMed  Google Scholar 

  115. Schlaich MP, Straznicky N, Grima M, Ika-Sari C, Dawood T, Mahfoud F, Lambert E, Chopra R, Socratous F, Hennebry S, Eikelis N, Bohm M, Krum H, Lambert G, Esler M, Sobotka PA. Renal denervation: a potential new treatment modality for polycystic ovary syndrome? J Hypertens. 2011;29:991–6.

    CAS  PubMed  Google Scholar 

  116. Lembo G, Grassi G. A lesson from polycystic ovarian syndrome: untangling the role of renal sympathetic nervous system on hypertension and insulin resistance. J Hypertens. 2011;29:836–7.

    CAS  PubMed  Google Scholar 

  117. Witkowski A, Preibisz A, Florczak E, Kadziela J, Sliwinski P, Bielen P, Michalowska I, Kabat M, Warchol E, Januszewicz M, Narkiewicz K, Somers VK, Sobotka PA, Januszewicz A. Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension. 2011;58:559–65.

    CAS  PubMed  Google Scholar 

  118. Ukena C, Mahfoud F, Kindermann I, Barth C, Lenski M, Kindermann M, Brandt MC, Hoppe UC, Krum H, Esler M, Sobotka PA, Bohm M. Cardiorespiratory response to exercise after renal sympathetic denervation in patients with resistant hypertension. J Am Coll Cardiol. 2011;58:1176–82.

    PubMed  Google Scholar 

  119. Lohmeier TE, Irwin E, Rossing M, Serdar DJ, Kieval RS. Prolonged activation of the baroreflex produces sustained hypotension. Hypertension. 2004;4:306–11.

    Google Scholar 

  120. Lohmeier TE, Dwyer TM, Irwin ED, Rossing MA, Kieval RS. Prolonged activation of the baroreflex abolishes obesity-induced hypertension. Hypertension. 2007;49:1307–14.

    CAS  PubMed  Google Scholar 

  121. Barrett CJ, Guild S, Ramchandra J, Malpas SC. Baroreceptor denervation prevents sympathoinhibition during angiotensin II-induced hypertension. Hypertension. 2005;46:1–5.

    Google Scholar 

  122. Bisognano JD, Kaufman CL, Bach DS, Lovett EG, de Leeuw P, DEBuT-HT and Rheos Feasibility Trial Investigators. Improved cardiac structure and function with chronic treatment using an implantable device in resistant hypertension: results from European and United States trials of the Rheos system. J Am Coll Cardiol. 2011;57:1787–8.

    PubMed  Google Scholar 

  123. Bisognano JD, Bakris G, Nadim MK, Sanchez K, Kroon A, Schafer J, de Leeuw P, Sica D. Baroreflex activation therapy lowers blood pressure in patients with resistant hypertension: results from the double-blind, randomized, placebo-controlled Rheos pivotal trial. J Am Coll Cardiol. 2011;58:765–7.

    PubMed  Google Scholar 

  124. Bakris GL, Nadim MK, Haller H, Lovett EG, Schafer JE, Bisognano JD. Baroreflex activation therapy provides durable benefit in patient with resistant hypertension: results of the long-term follow up in the Rheos Pivotal trail. J Am Soc Hypertens. 2012;6:152–8.

    PubMed  Google Scholar 

  125. Gronda E, Seravalle G, Brambilla G, Costantino G, Moneta A, Casini A, Alsheraei A, Lovett E, Grassi G. Chronic baroreflex activation reduces sympathetic tone and improves clinical outcomes in reduced-ejection fraction heart failure [abstr]. Circulation. 2013 (abstract 16137).

  126. Zuern CS, Rizas KD, Eick C, Stoleriu C, Bunk L, Barthel P, Balletshofer B, Gawaz M, Bauer A. Effects of renal sympathetic denervation on 24-hour blood pressure variability. Front Physiol. 2012;3:134.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Seravalle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seravalle, G., Mancia, G. & Grassi, G. Role of the Sympathetic Nervous System in Hypertension and Hypertension-Related Cardiovascular Disease. High Blood Press Cardiovasc Prev 21, 89–105 (2014). https://doi.org/10.1007/s40292-014-0056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40292-014-0056-1

Keywords

Navigation