Skip to main content
Log in

Advances in Detection of Kidney Transplant Injury

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Early detection of graft injury after kidney transplantation is key to maintaining long-term good graft function. Graft injury could be due to a multitude of factors including ischaemia reperfusion injury, cell or antibody-mediated rejection, progressive interstitial fibrosis and tubular atrophy, infections and toxicity from the immunosuppressive drugs themselves. The current gold standard for assessing renal graft dysfunction is renal biopsy. However, biopsy is usually late when triggered by a change in serum creatinine and of limited utility in diagnosis of early injury when histological changes are equivocal. Therefore, there is a need for timely, objective and non-invasive diagnostic techniques with good early predictive value to determine graft injury and provide precision in titrating immunosuppression. We review potential novel plasma and urine biomarkers that offer sensitive new strategies for early detection and provide major insights into mechanisms of graft injury. This is a rapidly expanding field, but it is likely that a combination of biomarkers will be required to provide adequate sensitivity and specificity for detecting graft injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hill NR, Fatoba ST, Oke JL, Hirst JA, O’Callaghan CA, Lasserson DS, et al. Global prevalence of chronic kidney disease—a systematic review and meta-analysis. PLoS One. 2016;11(7):e0158765. https://doi.org/10.1371/journal.pone.0158765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang JH, Skeans MA, Israni AK. Current status of kidney transplant outcomes: dying to survive. Adv Chronic Kidney Dis. 2016;23(5):281–6. https://doi.org/10.1053/j.ackd.2016.07.001.

    Article  PubMed  Google Scholar 

  3. Lechler RI, Sykes M, Thomson AW, Turka LA. Organ transplantation–how much of the promise has been realized? Nat Med. 2005;11(6):605–13. https://doi.org/10.1038/nm1251.

    Article  CAS  PubMed  Google Scholar 

  4. Salvadori M, Rosso G, Bertoni E. Update on ischemia-reperfusion injury in kidney transplantation: pathogenesis and treatment. World J Transplant. 2015;5(2):52–67. https://doi.org/10.5500/wjt.v5.i2.52.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wu WK, Famure O, Li Y, Kim SJ. Delayed graft function and the risk of acute rejection in the modern era of kidney transplantation. Kidney Int. 2015;88(4):851–8. https://doi.org/10.1038/ki.2015.190.

    Article  CAS  PubMed  Google Scholar 

  6. Salvadori M, Tsalouchos A. Biomarkers in renal transplantation: an updated review. World J Transplant. 2017;7(3):161–78. https://doi.org/10.5500/wjt.v7.i3.161.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bohra R, Klepacki J, Klawitter J, Klawitter J, Thurman JM, Christians U. Proteomics and metabolomics in renal transplantation-quo vadis? Transpl Int. 2013;26(3):225–41. https://doi.org/10.1111/tri.12003.

    Article  CAS  PubMed  Google Scholar 

  8. Mohammadpour N, Elyasi S, Vahdati N, Mohammadpour AH, Shamsara J. A review on therapeutic drug monitoring of immunosuppressant drugs. Iran J Basic Med Sci. 2011;14(6):485–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fernando M, Peake PW, Endre ZH. Biomarkers of calcineurin inhibitor nephrotoxicity in transplantation. Biomark Med. 2014;8(10):1247–62. https://doi.org/10.2217/bmm.14.86.

    Article  CAS  PubMed  Google Scholar 

  10. Gwinner W, Metzger J, Husi H, Marx D. Proteomics for rejection diagnosis in renal transplant patients: where are we now? World J Transplant. 2016;6(1):28–41. https://doi.org/10.5500/wjt.v6.i1.28.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Haas M, Loupy A, Lefaucheur C, Roufosse C, Glotz D, Seron D, et al. The Banff 2017 Kidney Meeting Report: revised diagnostic criteria for chronic active T cell-mediated rejection, antibody-mediated rejection, and prospects for integrative endpoints for next-generation clinical trials. Am J Transplant. 2018;18(2):293–307. https://doi.org/10.1111/ajt.14625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shipkova M, Wieland E. Editorial: immune monitoring in solid organ transplantation. Clin Biochem. 2016;49(4):317–9. https://doi.org/10.1016/j.clinbiochem.2016.01.005.

    Article  PubMed  Google Scholar 

  13. Hollis E, Shehata M, Khalifa F, El-Ghar MA, El-Diasty T, El-Baza A. Towards non-invasive diagnostic techniques for early detection of acute renal transplant rejection: a review. Egypt J Radiol Nucl Med. 2017. https://doi.org/10.1016/j.ejrnm.2016.11.005.

    Article  Google Scholar 

  14. Succar L, Pianta TJ, Davidson T, Pickering JW, Endre ZH. Subclinical chronic kidney disease modifies the diagnosis of experimental acute kidney injury. Kidney Int. 2017;92(3):680–92. https://doi.org/10.1016/j.kint.2017.02.030.

    Article  PubMed  Google Scholar 

  15. Myers GL, Miller WG, Coresh J, Fleming J, Greenberg N, Greene T, et al. Recommendations for improving serum creatinine measurement: a report from the Laboratory Working Group of the National Kidney Disease Education Program. Clin Chem. 2006;52(1):5–18. https://doi.org/10.1373/clinchem.2005.0525144.

    Article  CAS  PubMed  Google Scholar 

  16. Solez K, Racusen LC. The Banff classification revisited. Kidney Int. 2013;83(2):201–6. https://doi.org/10.1038/ki.2012.395.

    Article  PubMed  Google Scholar 

  17. Meersch M, Schmidt C, Hoffmeier A, Van Aken H, Wempe C, Gerss J, et al. Prevention of cardiac surgery-associated AKI by implementing the KDIGO guidelines in high risk patients identified by biomarkers: the PrevAKI randomized controlled trial. Intensive Care Med. 2017;43(11):1551–61. https://doi.org/10.1007/s00134-016-4670-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pianta TJ, Peake PW, Pickering JW, Kelleher M, Buckley NA, Endre ZH. Evaluation of biomarkers of cell cycle arrest and inflammation in prediction of dialysis or recovery after kidney transplantation. Transpl Int. 2015;28(12):1392–404. https://doi.org/10.1111/tri.12636.

    Article  CAS  PubMed  Google Scholar 

  19. Christians U, Klawitter J, Klawitter J. Biomarkers in transplantation—proteomics and metabolomics. Ther Drug Monit. 2016;38(Suppl 1):S70–4. https://doi.org/10.1097/ftd.0000000000000243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pianta TJ, Peake PW, Pickering JW, Kelleher M, Buckley NA, Endre ZH. Clusterin in kidney transplantation: novel biomarkers versus serum creatinine for early prediction of delayed graft function. Transplantation. 2015;99(1):171–9. https://doi.org/10.1097/tp.0000000000000256.

    Article  CAS  PubMed  Google Scholar 

  21. Pianta TJ, Succar L, Davidson T, Buckley NA, Endre ZH. Monitoring treatment of acute kidney injury with damage biomarkers. Toxicol Lett. 2017;268:63–70. https://doi.org/10.1016/j.toxlet.2017.01.001.

    Article  CAS  PubMed  Google Scholar 

  22. Vilar E, Varagunam M, Yaqoob MM, Raftery M, Thuraisingham R. Creatinine reduction ratio: a useful marker to identify medium and high-risk renal transplants. Transplantation. 2010;89(1):97–103. https://doi.org/10.1097/TP.0b013e3181be3dd1.

    Article  CAS  PubMed  Google Scholar 

  23. Yarlagadda SG, Coca SG, Formica RN Jr, Poggio ED, Parikh CR. Association between delayed graft function and allograft and patient survival: a systematic review and meta-analysis. Nephrol Dial Transplant. 2009;24(3):1039–47. https://doi.org/10.1093/ndt/gfn667.

    Article  PubMed  Google Scholar 

  24. Moers C, Smits JM, Maathuis MH, Treckmann J, van Gelder F, Napieralski BP, et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N Engl J Med. 2009;360(1):7–19. https://doi.org/10.1056/NEJMoa0802289.

    Article  CAS  PubMed  Google Scholar 

  25. Ronco C, Legrand M, Goldstein SL, Hur M, Tran N, Howell EC, et al. Neutrophil gelatinase-associated lipocalin: ready for routine clinical use? An international perspective. Blood Purif. 2014;37(4):271–85. https://doi.org/10.1159/000360689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Devarajan P. Neutrophil gelatinase-associated lipocalin (NGAL): a new marker of kidney disease. Scand J Clin Lab Investig Suppl. 2008;241:89–94. https://doi.org/10.1080/00365510802150158.

    Article  CAS  Google Scholar 

  27. Fonseca I, Oliveira JC, Almeida M, Cruz M, Malho A, Martins LS, et al. Neutrophil gelatinase-associated lipocalin in kidney transplantation is an early marker of graft dysfunction and is associated with 1-year renal function. J Transplant. 2013;2013:650123. https://doi.org/10.1155/2013/650123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hall IE, Yarlagadda SG, Coca SG, Wang Z, Doshi M, Devarajan P, et al. IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J Am Soc Nephrol. 2010;21(1):189–97. https://doi.org/10.1681/asn.2009030264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pezeshgi A, Azar SA, Ghasemi H, Kamali K, Esmaeilzadeh A, Hajsalimi B, et al. Role of plasma neutrophil gelatinase-associated lipocalin as an emerging biomarker of acute renal failure following kidney transplantation and its correlation with plasma creatinine. J Ren Inj Prev. 2016;5(2):98–103. https://doi.org/10.15171/jrip.2016.21.

    Article  CAS  PubMed  Google Scholar 

  30. Cantaluppi V, Dellepiane S, Tamagnone M, Medica D, Figliolini F, Messina M, et al. Neutrophil gelatinase associated lipocalin is an early and accurate biomarker of graft function and tissue regeneration in kidney transplantation from extended criteria donors. PLoS One. 2015;10(6):e0129279. https://doi.org/10.1371/journal.pone.0129279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Peake PW, Pianta TJ, Succar L, Fernando M, Pugh DJ, McNamara K, et al. A comparison of the ability of levels of urinary biomarker proteins and exosomal mRNA to predict outcomes after renal transplantation. PLoS One. 2014;9(2):e98644. https://doi.org/10.1371/journal.pone.0098644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Susal C, Wettstein D, Dohler B, Morath C, Ruhenstroth A, Scherer S, et al. Association of kidney graft loss with de novo produced donor-specific and non-donor-specific HLA antibodies detected by single antigen testing. Transplantation. 2015;99(9):1976–80. https://doi.org/10.1097/tp.0000000000000672.

    Article  PubMed  Google Scholar 

  33. Yamamoto T, Watarai Y, Takeda A, Tsujita M, Hiramitsu T, Goto N, et al. De novo anti-HLA DSA characteristics and subclinical antibody-mediated kidney allograft injury. Transplantation. 2016;100(10):2194–202. https://doi.org/10.1097/tp.0000000000001012.

    Article  CAS  PubMed  Google Scholar 

  34. Wiebe C, Gibson IW, Blydt-Hansen TD, Karpinski M, Ho J, Storsley LJ, et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am J Transplant. 2012;12(5):1157–67. https://doi.org/10.1111/j.1600-6143.2012.04013.x.

    Article  CAS  PubMed  Google Scholar 

  35. Ginevri F, Nocera A, Comoli P, Innocente A, Cioni M, Parodi A, et al. Posttransplant de novo donor-specific HLA antibodies identify pediatric kidney recipients at risk for late antibody-mediated rejection. Am J Transplant. 2012;12(12):3355–62. https://doi.org/10.1111/j.1600-6143.2012.04251.x.

    Article  CAS  PubMed  Google Scholar 

  36. Wiebe C, Gibson IW, Blydt-Hansen TD, Pochinco D, Birk PE, Ho J, et al. Rates and determinants of progression to graft failure in kidney allograft recipients with de novo donor-specific antibody. Am J Transplant. 2015;15(11):2921–30. https://doi.org/10.1111/ajt.13347.

    Article  CAS  PubMed  Google Scholar 

  37. Charnaya O, Tuchman S, Moudgil A. Results of early treatment for de novo donor-specific antibodies in pediatric kidney transplant recipients in a cross-sectional and longitudinal cohort. Pediatr Transplant. 2018. https://doi.org/10.1111/petr.13108.

    Article  PubMed  Google Scholar 

  38. Billing H, Rieger S, Susal C, Waldherr R, Opelz G, Wuhl E, et al. IVIG and rituximab for treatment of chronic antibody-mediated rejection: a prospective study in paediatric renal transplantation with a 2-year follow-up. Transpl Int. 2012;25(11):1165–73. https://doi.org/10.1111/j.1432-2277.2012.01544.x.

    Article  CAS  PubMed  Google Scholar 

  39. Orandi BJ, Chow EH, Hsu A, Gupta N, Van Arendonk KJ, Garonzik-Wang JM, et al. Quantifying renal allograft loss following early antibody-mediated rejection. Am J Transplant. 2015;15(2):489–98. https://doi.org/10.1111/ajt.12982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cooper JE, Gralla J, Klem P, Chan L, Wiseman AC. High dose intravenous immunoglobulin therapy for donor-specific antibodies in kidney transplant recipients with acute and chronic graft dysfunction. Transplantation. 2014;97(12):1253–9. https://doi.org/10.1097/01.Tp.0000443226.74584.03.

    Article  CAS  PubMed  Google Scholar 

  41. Aubert O, Loupy A, Hidalgo L, van Huyen JPD, Higgins S, Viglietti D, et al. Antibody-mediated rejection due to preexisting versus de novo donor-specific antibodies in kidney allograft recipients. J Am Soc Nephrol. 2017;28(6):1912–23. https://doi.org/10.1681/asn.2016070797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Menon MC, Murphy B, Heeger PS. Moving biomarkers toward clinical implementation in kidney transplantation. J Am Soc Nephrol. 2017;28(3):735–47. https://doi.org/10.1681/asn.2016080858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mueller TF, Reeve J, Jhangri GS, Mengel M, Jacaj Z, Cairo L, et al. The transcriptome of the implant biopsy identifies donor kidneys at increased risk of delayed graft function. Am J Transplant. 2008;8(1):78–85. https://doi.org/10.1111/j.1600-6143.2007.02032.x.

    Article  CAS  PubMed  Google Scholar 

  44. Kreepala C, Famulski KS, Chang J, Halloran PF. Comparing molecular assessment of implantation biopsies with histologic and demographic risk assessment. Am J Transplant. 2013;13(2):415–26. https://doi.org/10.1111/ajt.12043.

    Article  CAS  PubMed  Google Scholar 

  45. Khatri P, Roedder S, Kimura N, De Vusser K, Morgan AA, Gong Y, et al. A common rejection module (CRM) for acute rejection across multiple organs identifies novel therapeutics for organ transplantation. J Exp Med. 2013;210(11):2205–21. https://doi.org/10.1084/jem.20122709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sigdel TK, Bestard O, Tran TQ, Hsieh SC, Roedder S, Damm I, et al. A computational gene expression score for predicting immune injury in renal allografts. PLoS One. 2015;10(9):e0138133. https://doi.org/10.1371/journal.pone.0138133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reeve J, Sellares J, Mengel M, Sis B, Skene A, Hidalgo L, et al. Molecular diagnosis of T cell-mediated rejection in human kidney transplant biopsies. Am J Transplant. 2013;13(3):645–55. https://doi.org/10.1111/ajt.12079.

    Article  CAS  PubMed  Google Scholar 

  48. Limmathurotsakul D, Turner EL, Wuthiekanun V, Thaipadungpanit J, Suputtamongkol Y, Chierakul W, et al. Fool’s gold: why imperfect reference tests are undermining the evaluation of novel diagnostics: a reevaluation of 5 diagnostic tests for leptospirosis. Clin Infect Dis. 2012;55(3):322–31. https://doi.org/10.1093/cid/cis403.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Halloran PF, Pereira AB, Chang J, Matas A, Picton M, De Freitas D, et al. Microarray diagnosis of antibody-mediated rejection in kidney transplant biopsies: an international prospective study (INTERCOM). Am J Transplant. 2013;13(11):2865–74. https://doi.org/10.1111/ajt.12465.

    Article  CAS  PubMed  Google Scholar 

  50. Loupy A, Lefaucheur C, Vernerey D, Chang J, Hidalgo LG, Beuscart T, et al. Molecular microscope strategy to improve risk stratification in early antibody-mediated kidney allograft rejection. J Am Soc Nephrol. 2014;25(10):2267–77. https://doi.org/10.1681/asn.2013111149.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Traitanon O, Poggio ED, Fairchild RL. Molecular monitoring of alloimmune-mediated injury in kidney transplant patients. Curr Opin Nephrol Hypertens. 2014;23(6):625–30. https://doi.org/10.1097/mnh.0000000000000064.

    Article  CAS  PubMed  Google Scholar 

  52. Mas VR, Dumur CI, Scian MJ, Gehrau RC, Maluf DG. MicroRNAs as biomarkers in solid organ transplantation. Am J Transplant. 2013;13(1):11–9. https://doi.org/10.1111/j.1600-6143.2012.04313.x.

    Article  CAS  PubMed  Google Scholar 

  53. Danger R, Paul C, Giral M, Lavault A, Foucher Y, Degauque N, et al. Expression of miR-142-5p in peripheral blood mononuclear cells from renal transplant patients with chronic antibody-mediated rejection. PLoS One. 2013;8(4):e60702. https://doi.org/10.1371/journal.pone.0060702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilflingseder J, Reindl-Schwaighofer R, Sunzenauer J, Kainz A, Heinzel A, Mayer B, et al. MicroRNAs in kidney transplantation. Nephrol Dial Transplant. 2015;30(6):910–7. https://doi.org/10.1093/ndt/gfu280.

    Article  CAS  PubMed  Google Scholar 

  55. Bloom RD, Bromberg JS, Poggio ED, Bunnapradist S, Langone AJ, Sood P, et al. Cell-free DNA and active rejection in kidney allografts. J Am Soc Nephrol. 2017;28(7):2221–32. https://doi.org/10.1681/asn.2016091034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Adamek M, Opelz G, Klein K, Morath C, Tran TH. A fast and simple method for detecting and quantifying donor-derived cell-free DNA in sera of solid organ transplant recipients as a biomarker for graft function. Clin Chem Lab Med. 2016;54(7):1147–55. https://doi.org/10.1515/cclm-2015-0622.

    Article  CAS  PubMed  Google Scholar 

  57. Garcia Moreira V, Prieto Garcia B, Baltar Martin JM, Ortega Suarez F, Alvarez FV. Cell-free DNA as a noninvasive acute rejection marker in renal transplantation. Clin Chem. 2009;55(11):1958–66. https://doi.org/10.1373/clinchem.2009.129072.

    Article  CAS  PubMed  Google Scholar 

  58. Sigdel TK, Sarwal MM. Cell-free DNA as a measure of transplant injury. Clin Transpl. 2012;201–5.

  59. Celec P, Vlkova B, Laukova L, Babickova J, Boor P. Cell-free DNA: the role in pathophysiology and as a biomarker in kidney diseases. Expert Rev Mol Med. 2018;20:e1. https://doi.org/10.1017/erm.2017.12.

    Article  CAS  PubMed  Google Scholar 

  60. Beck J, Bierau S, Balzer S, Andag R, Kanzow P, Schmitz J, et al. Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. Clin Chem. 2013;59(12):1732–41. https://doi.org/10.1373/clinchem.2013.210328.

    Article  CAS  PubMed  Google Scholar 

  61. Schütz E, Fischer A, Beck J, Harden M, Koch M, Wuensch T, et al. Graft-derived cell-free DNA, a noninvasive early rejection and graft damage marker in liver transplantation: a prospective, observational, multicenter cohort study. PLoS Med. 2017;14(4):e1002286. https://doi.org/10.1371/journal.pmed.1002286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Knight SR, Thorne A, Lo Faro ML. Donor-specific cell-free DNA as a biomarker in solid organ transplantation. A systematic review. Transplantation. 2019;103(2):273–83. https://doi.org/10.1097/tp.0000000000002482.

    Article  CAS  PubMed  Google Scholar 

  63. Lee H, Park Y-M, We Y-M, Han DJ, Seo J-W, Moon H, et al. Evaluation of digital PCR as a technique for monitoring acute rejection in kidney transplantation. Genom Inform. 2017;15(1):2–10. https://doi.org/10.5808/GI.2017.15.1.2.

    Article  Google Scholar 

  64. Grskovic M, Hiller DJ, Eubank LA, Sninsky JJ, Christopherson C, Collins JP, et al. Validation of a clinical-grade assay to measure donor-derived cell-free DNA in solid organ transplant recipients. J Mol Diagn. 2016;18(6):890–902. https://doi.org/10.1016/j.jmoldx.2016.07.003.

    Article  CAS  PubMed  Google Scholar 

  65. Gielis EM, Beirnaert C, Dendooven A, Meysman P, Laukens K, De Schrijver J, et al. Plasma donor-derived cell-free DNA kinetics after kidney transplantation using a single tube multiplex PCR assay. PLoS One. 2018;13(12):e0208207. https://doi.org/10.1371/journal.pone.0208207.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stoltz D, Brubaker A, Grskovic M, Woodward R, Gallo A. Donor-derived cell-free DNA predicts biopsy-proven acute cellular rejection in pediatric kidney transplant recipients [abstract no. 483]. 2017 American Transplant Congress; 29 Apr–3 May. Chicago; 2017.

  67. Sigdel TK, Vitalone MJ, Tran TQ, Dai H, Hsieh S-C, Salvatierra O, et al. A rapid noninvasive assay for the detection of renal transplant injury. Transplantation. 2013;96(1):97–101. https://doi.org/10.1097/TP.0b013e318295ee5a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sigdel T, Tran T, Hsieh S-C, Sarwal M. Urinary cell-free dna is a sensitive marker of early renal transplant injury [abstract no. B272]. 2015 American Transplant Congress; 2–6 May; Philadelphia; 2015.

  69. Beck J, Kanzow P, Schmitz J, Kollmar O, Oellerich M, Schütz E. Absolute quantification of graft derived cell-free DNA (GcfDNA) early after liver transplantation (LTx) using droplet digital PCR. Clin Chem. 2014;60(Suppl):S194–5.

    Google Scholar 

  70. Whitlam JB, Ling L, Skene A, Kanellis J, Ierino FL, Slater HR, et al. Diagnostic application of kidney allograft-derived absolute cell-free DNA levels during transplant dysfunction. Am J Transplant. 2018. https://doi.org/10.1111/ajt.15142 (Epub 2018 Oct 12).

    Article  PubMed  Google Scholar 

  71. Bromberg JS, Brennan DC, Poggio E, Bunnapradist S, Langone A, Sood P, et al. Biological variation of donor-derived cell-free dna in renal transplant recipients: clinical implications. J Appl Lab Med. 2017;2(3):309–21. https://doi.org/10.1373/jalm.2016.022731.

    Article  CAS  Google Scholar 

  72. Sigdel TK, Archila FA, Constantin T, Prins SA, Liberto J, Damm I, et al. Optimizing detection of kidney transplant injury by assessment of donor-derived cell-free DNA via massively multiplex PCR. J Clin Med. 2018. https://doi.org/10.3390/jcm8010019.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Goh SK, Muralidharan V, Christophi C, Do H, Dobrovic A. Probe-free digital PCR quantitative methodology to measure donor-specific cell-free DNA after solid-organ transplantation. Clin Chem. 2017;63(3):742–50. https://doi.org/10.1373/clinchem.2016.264838.

    Article  CAS  PubMed  Google Scholar 

  74. Wishart DS. Metabolomics: a complementary tool in renal transplantation. Contrib Nephrol. 2008;160:76–87. https://doi.org/10.1159/000125935.

    Article  CAS  PubMed  Google Scholar 

  75. Naesens M, Sarwal MM. Molecular diagnostics in transplantation. Nat Rev Nephrol. 2010;6:614–28. https://doi.org/10.1038/nrneph.2010.113.

    Article  CAS  PubMed  Google Scholar 

  76. Nasr M, Sigdel T, Sarwal M. Advances in diagnostics for transplant rejection. Expert Rev Mol Diagn. 2016;16(10):1121–32. https://doi.org/10.1080/14737159.2016.1239530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Blydt-Hansen TD, Sharma A, Gibson IW, Wishart DS, Mandal R, Ho J, et al. Urinary metabolomics for noninvasive detection of antibody-mediated rejection in children after kidney transplantation. Transplantation. 2017;101(10):2553–61. https://doi.org/10.1097/tp.0000000000001662.

    Article  CAS  PubMed  Google Scholar 

  78. Mincham CM, Gibson IW, Sharma A, Wiebe C, Mandal R, Rush D, et al. Evolution of renal function and urinary biomarker indicators of inflammation on serial kidney biopsies in pediatric kidney transplant recipients with and without rejection. Pediatr Transplant. 2018;22(5):e13202. https://doi.org/10.1111/petr.13202.

    Article  CAS  PubMed  Google Scholar 

  79. Foxall PJ, Mellotte GJ, Bending MR, Lindon JC, Nicholson JK. NMR spectroscopy as a novel approach to the monitoring of renal transplant function. Kidney Int. 1993;43(1):234–45.

    Article  CAS  Google Scholar 

  80. Klawitter J, Haschke M, Kahle C, Dingmann C, Klawitter J, Leibfritz D, et al. Toxicodynamic effects of ciclosporin are reflected by metabolite profiles in the urine of healthy individuals after a single dose. Br J Clin Pharmacol. 2010;70(2):241–51. https://doi.org/10.1111/j.1365-2125.2010.03689.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Klepacki J, Klawitter J, Klawitter J, Thurman JM, Christians U. A high-performance liquid chromatography-tandem mass spectrometry-based targeted metabolomics kidney dysfunction marker panel in human urine. Clin Chim Acta. 2015;446:43–53. https://doi.org/10.1016/j.cca.2015.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Endre ZH, Pickering JW, Storer MK, Hu WP, Moorhead KT, Allardyce R, et al. Breath ammonia and trimethylamine allow real-time monitoring of haemodialysis efficacy. Physiol Meas. 2011;32(1):115–30. https://doi.org/10.1088/0967-3334/32/1/008.

    Article  CAS  PubMed  Google Scholar 

  83. Stubbs JR, House JA, Ocque AJ, Zhang S, Johnson C, Kimber C, et al. Serum trimethylamine-N-oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J Am Soc Nephrol. 2016;27(1):305–13. https://doi.org/10.1681/asn.2014111063.

    Article  CAS  PubMed  Google Scholar 

  84. Bonneau E, Tetreault N, Robitaille R, Boucher A, De Guire V. Metabolomics: perspectives on potential biomarkers in organ transplantation and immunosuppressant toxicity. Clin Biochem. 2016;49(4–5):377–84. https://doi.org/10.1016/j.clinbiochem.2016.01.006.

    Article  CAS  PubMed  Google Scholar 

  85. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84. https://doi.org/10.1056/NEJMoa1109400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim KB, Yang JY, Kwack SJ, Park KL, Kim HS, Ryu DH, et al. Toxicometabolomics of urinary biomarkers for human gastric cancer in a mouse model. J Toxicol Environ Health A. 2010;73(21–22):1420–30. https://doi.org/10.1080/15287394.2010.511545.

    Article  CAS  PubMed  Google Scholar 

  87. Calderisi M, Vivi A, Mlynarz P, Tassin M, Banasik M, Dawiskiba T, et al. Using metabolomics to monitor kidney transplantation patients by means of clustering to spot anomalous patient behavior. Transplant Proc. 2013;45(4):1511–5. https://doi.org/10.1016/j.transproceed.2013.02.049.

    Article  CAS  PubMed  Google Scholar 

  88. Karpievitch YV, Polpitiya AD, Anderson GA, Smith RD, Dabney AR. Liquid chromatography mass spectrometry-based proteomics: biological and technological aspects. Ann Appl Stat. 2010;4(4):1797–823. https://doi.org/10.1214/10-AOAS341.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Anglicheau D, Naesens M, Essig M, Gwinner W, Marquet P. Establishing biomarkers in transplant medicine: a critical review of current approaches. Transplantation. 2016;100:2024–38. https://doi.org/10.1097/TP.0000000000001321.

    Article  CAS  PubMed  Google Scholar 

  90. Nesvizhskii AI, Vitek O, Aebersold R. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods. 2007;4(10):787–97. https://doi.org/10.1038/nmeth1088.

    Article  CAS  PubMed  Google Scholar 

  91. Tang N, Tornatore P, Weinberger SR. Current developments in SELDI affinity technology. Mass Spectrom Rev. 2004;23(1):34–44. https://doi.org/10.1002/mas.10066.

    Article  CAS  PubMed  Google Scholar 

  92. Caprioli RM, Farmer TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem. 1997;69(23):4751–60.

    Article  CAS  Google Scholar 

  93. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198. https://doi.org/10.1038/nature01511.

    Article  CAS  PubMed  Google Scholar 

  94. Sigdel TK, Kaushal A, Gritsenko M, Norbeck AD, Qian WJ, Xiao W, et al. Shotgun proteomics identifies proteins specific for acute renal transplant rejection. Proteom Clin Appl. 2010;4(1):32–47. https://doi.org/10.1002/prca.200900124.

    Article  CAS  Google Scholar 

  95. Xie F, Liu T, Qian W-J, Petyuk VA, Smith RD. Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem. 2011;286(29):25443–9. https://doi.org/10.1074/jbc.R110.199703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sigdel TK, Gao Y, He J, Wang A, Nicora CD, Fillmore TL, et al. Mining the human urine proteome for monitoring renal transplant injury. Kidney Int. 2016;89(6):1244–52. https://doi.org/10.1016/j.kint.2015.12.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ling XB, Sigdel TK, Lau K, Ying L, Lau I, Schilling J, et al. Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection. J Am Soc Nephrol. 2010;21(4):646–53. https://doi.org/10.1681/ASN.2009080876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Han X, Aslanian A, Yates JR. Mass spectrometry for proteomics. Curr Opin Chem Biol. 2008;12(5):483–90. https://doi.org/10.1016/j.cbpa.2008.07.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process. 1987;78:53–68. https://doi.org/10.1016/0168-1176(87)87041-6.

    Article  CAS  Google Scholar 

  100. Freue GV, Sasaki M, Meredith A, Gunther OP, Bergman A, Takhar M, et al. Proteomic signatures in plasma during early acute renal allograft rejection. Mol Cell Proteom. 2010;9(9):1954–67. https://doi.org/10.1074/mcp.M110.000554.

    Article  CAS  Google Scholar 

  101. Wegdam W, Moerland PD, Meijer D, de Jong SM, Hoefsloot HCJ, Kenter GG, et al. A critical assessment of SELDI-TOF-MS for biomarker discovery in serum and tissue of patients with an ovarian mass. Proteome Sci. 2012;10:45. https://doi.org/10.1186/1477-5956-10-45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Baggerly KA, Morris JS, Coombes KR. Reproducibility of SELDI-TOF protein patterns in serum: comparing datasets from different experiments. Bioinformatics. 2004;20(5):777–85. https://doi.org/10.1093/bioinformatics/btg484.

    Article  CAS  PubMed  Google Scholar 

  103. Metzger J, Chatzikyrkou C, Broecker V, Schiffer E, Jaensch L, Iphoefer A, et al. Diagnosis of subclinical and clinical acute T-cell-mediated rejection in renal transplant patients by urinary proteome analysis. Proteom Clin Appl. 2011;5(5–6):322–33. https://doi.org/10.1002/prca.201000153.

    Article  CAS  Google Scholar 

  104. Huang H, Xu X, Yao C, Cai M, Qian Y, Wang X, et al. Serum levels of CXCR3 ligands predict T cell-mediated acute rejection after kidney transplantation. Mol Med Rep. 2014;9(1):45–50. https://doi.org/10.3892/mmr.2013.1753.

    Article  CAS  PubMed  Google Scholar 

  105. Hricik DE, Nickerson P, Formica RN, Poggio ED, Rush D, Newell KA, et al. Multicenter validation of urinary CXCL9 as a risk-stratifying biomarker for kidney transplant injury. Am J Transplant. 2013;13(10):2634–44. https://doi.org/10.1111/ajt.12426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hirt-Minkowski P, Amico P, Ho J, Gao A, Bestland J, Hopfer H, et al. Detection of clinical and subclinical tubulo-interstitial inflammation by the urinary CXCL10 chemokine in a real-life setting. Am J Transplant. 2012;12(7):1811–23. https://doi.org/10.1111/j.1600-6143.2012.03999.x.

    Article  CAS  PubMed  Google Scholar 

  107. Raza A, Firasat S, Khaliq S, Aziz T, Mubarak M, Naqvi SA, et al. The association of urinary interferon-gamma inducible protein-10 (IP10/CXCL10) levels with kidney allograft rejection. Inflamm Res. 2017;66(5):425–32. https://doi.org/10.1007/s00011-017-1025-7.

    Article  CAS  PubMed  Google Scholar 

  108. Ho J, Sharma A, Mandal R, Wishart DS, Wiebe C, Storsley L, et al. Detecting renal allograft inflammation using quantitative urine metabolomics and CXCL10. Transplant Direct. 2016;2(6):e78. https://doi.org/10.1097/txd.0000000000000589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Crespo E, Cravedi P, Martorell J, Luque S, Melilli E, Cruzado JM, et al. Posttransplant peripheral blood donor-specific interferon-gamma enzyme-linked immune spot assay differentiates risk of subclinical rejection and de novo donor-specific alloantibodies in kidney transplant recipients. Kidney Int. 2017;92(1):201–13. https://doi.org/10.1016/j.kint.2016.12.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. De Serres SA, Mfarrej BG, Grafals M, Riella LV, Magee CN, Yeung MY, et al. Derivation and validation of a cytokine-based assay to screen for acute rejection in renal transplant recipients. Clin J Am Soc Nephrol. 2012;7(6):1018–25. https://doi.org/10.2215/cjn.11051011.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Fabrega E, Lopez-Hoyos M, San Segundo D, Casafont F, Angel Mieses M, Sampedro B, et al. Serum levels of interleukin-9 during acute rejection in liver transplantation. Transplant Proc. 2012;44(6):1533–5. https://doi.org/10.1016/j.transproceed.2012.05.013.

    Article  CAS  PubMed  Google Scholar 

  112. Fabrega E, Lopez-Hoyos M, San Segundo D, Casafont F, Pons-Romero F. Changes in the serum levels of interleukin-17/interleukin-23 during acute rejection in liver transplantation. Liver Transplant. 2009;15(6):629–33. https://doi.org/10.1002/lt.21724.

    Article  Google Scholar 

  113. Sharma VK, Bologa RM, Li B, Xu GP, Lagman M, Hiscock W, et al. Molecular executors of cell death–differential intrarenal expression of Fas ligand, Fas, granzyme B, and perforin during acute and/or chronic rejection of human renal allografts. Transplantation. 1996;62(12):1860–6.

    Article  CAS  Google Scholar 

  114. Heng B, Ding H, Ren H, Shi L, Chen J, Wu X, et al. Diagnostic performance of Fas ligand mRNA expression for acute rejection after kidney transplantation: a systematic review and meta-analysis. PLoS One. 2016;11(11):e0165628-e. https://doi.org/10.1371/journal.pone.0165628.

    Article  CAS  Google Scholar 

  115. Lettau M, Paulsen M, Schmidt H, Janssen O. Insights into the molecular regulation of FasL (CD178) biology. Eur J Cell Biol. 2011;90(6–7):456–66. https://doi.org/10.1016/j.ejcb.2010.10.006.

    Article  CAS  PubMed  Google Scholar 

  116. Vasconcellos LM, Schachter AD, Zheng XX, Vasconcellos LH, Shapiro M, Harmon WE, et al. Cytotoxic lymphocyte gene expression in peripheral blood leukocytes correlates with rejecting renal allografts. Transplantation. 1998;66(5):562–6.

    Article  CAS  Google Scholar 

  117. Roedder S, Sigdel T, Salomonis N, Hsieh S, Dai H, Bestard O, et al. The kSORT assay to detect renal transplant patients at high risk for acute rejection: results of the multicenter AART study. PLoS Med. 2014;11(11):e1001759. https://doi.org/10.1371/journal.pmed.1001759.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Li L, Khatri P, Sigdel TK, Tran T, Ying L, Vitalone MJ, et al. A peripheral blood diagnostic test for acute rejection in renal transplantation. Am J Transplant. 2012;12(10):2710–8. https://doi.org/10.1111/j.1600-6143.2012.04253.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Crespo E, Roedder S, Sigdel T, Hsieh SC, Luque S, Cruzado JM, et al. Molecular and functional noninvasive immune monitoring in the ESCAPE study for prediction of subclinical renal allograft rejection. Transplantation. 2017;101(6):1400–9. https://doi.org/10.1097/tp.0000000000001287.

    Article  CAS  PubMed  Google Scholar 

  120. Li B, Hartono C, Ding R, Sharma VK, Ramaswamy R, Qian B, et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med. 2001;344(13):947–54. https://doi.org/10.1056/NEJM200103293441301.

    Article  CAS  PubMed  Google Scholar 

  121. Suthanthiran M, Schwartz JE, Ding R, Abecassis M, Dadhania D, Samstein B, et al. Urinary-cell mRNA profile and acute cellular rejection in kidney allografts. N Engl J Med. 2013;369(1):20–31. https://doi.org/10.1056/NEJMoa1215555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Meersch M, Schmidt C, Van Aken H, Martens S, Rossaint J, Singbartl K, et al. Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. PLoS One. 2014;9(3):e93460-e. https://doi.org/10.1371/journal.pone.0093460.

    Article  CAS  Google Scholar 

  123. Galichon P, Amrouche L, Hertig A, Brocheriou I, Rabant M, Xu-Dubois YC, et al. Urinary mRNA for the diagnosis of renal allograft rejection: the issue of normalization. Am J Transplant. 2016;16(10):3033–40. https://doi.org/10.1111/ajt.13891.

    Article  CAS  PubMed  Google Scholar 

  124. Seo JW, Moon H, Kim SY, Moon JY, Jeong KH, Lee YH, et al. Both absolute and relative quantification of urinary mRNA are useful for non-invasive diagnosis of acute kidney allograft rejection. PLoS One. 2017;12(6):e0180045. https://doi.org/10.1371/journal.pone.0180045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Muthukumar T, Dadhania D, Ding R, Snopkowski C, Naqvi R, Lee JB, et al. Messenger RNA for FOXP3 in the urine of renal-allograft recipients. N Engl J Med. 2005;353(22):2342–51. https://doi.org/10.1056/NEJMoa051907.

    Article  CAS  PubMed  Google Scholar 

  126. Afaneh C, Muthukumar T, Lubetzky M, Ding R, Snopkowski C, Sharma VK, et al. Urinary cell levels of mRNA for OX40, OX40L, PD-1, PD-L1, or PD-L2 and acute rejection of human renal allografts. Transplantation. 2010;90(12):1381–7. https://doi.org/10.1097/TP.0b013e3181ffbadd.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Medeiros M, Sharma VK, Ding R, Yamaji K, Li B, Muthukumar T, et al. Optimization of RNA yield, purity and mRNA copy number by treatment of urine cell pellets with RNAlater. J Immunol Methods. 2003;279(1–2):135–42.

    Article  CAS  Google Scholar 

  128. Waikar SS, Betensky RA, Emerson SC, Bonventre JV. Imperfect gold standards for kidney injury biomarker evaluation. J Am Soc Nephrol. 2012;23(1):13–21. https://doi.org/10.1681/asn.2010111124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pickering JW, Endre ZH. Linking injury to outcome in acute kidney injury: a matter of sensitivity. PLoS One. 2013;8(4):e62691. https://doi.org/10.1371/journal.pone.0062691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lorenzen JM, Volkmann I, Fiedler J, Schmidt M, Scheffner I, Haller H, et al. Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am J Transplant. 2011;11(10):2221–7. https://doi.org/10.1111/j.1600-6143.2011.03679.x.

    Article  CAS  PubMed  Google Scholar 

  131. De Vlaminck I, Valantine HA, Snyder TM, Strehl C, Cohen G, Luikart H, et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci Transl Med. 2014;6(241):241ra77. https://doi.org/10.1126/scitranslmed.3007803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. De Vlaminck I, Martin L, Kertesz M, Patel K, Kowarsky M, Strehl C, et al. Noninvasive monitoring of infection and rejection after lung transplantation. Proc Natl Acad Sci USA. 2015;112(43):13336–41. https://doi.org/10.1073/pnas.1517494112.

    Article  CAS  PubMed  Google Scholar 

  133. Johnston O, Cassidy H, O’Connell S, O’Riordan A, Gallagher W, Maguire PB, et al. Identification of beta2-microglobulin as a urinary biomarker for chronic allograft nephropathy using proteomic methods. Proteom Clin Appl. 2011;5(7–8):422–31. https://doi.org/10.1002/prca.201000160.

    Article  CAS  Google Scholar 

  134. Kurian SM, Heilman R, Mondala TS, Nakorchevsky A, Hewel JA, Campbell D, et al. Biomarkers for early and late stage chronic allograft nephropathy by proteogenomic profiling of peripheral blood. PLoS One. 2009;4(7):e6212. https://doi.org/10.1371/journal.pone.0006212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Banon-Maneus E, Diekmann F, Carrascal M, Quintana LF, Moya-Rull D, Bescos M, et al. Two-dimensional difference gel electrophoresis urinary proteomic profile in the search of nonimmune chronic allograft dysfunction biomarkers. Transplantation. 2010;89(5):548–58. https://doi.org/10.1097/TP.0b013e3181c690e3.

    Article  CAS  PubMed  Google Scholar 

  136. Maluf DG, Dumur CI, Suh JL, Scian MJ, King AL, Cathro H, et al. The urine microRNA profile may help monitor post-transplant renal graft function. Kidney Int. 2014;85(2):439–49. https://doi.org/10.1038/ki.2013.338.

    Article  CAS  PubMed  Google Scholar 

  137. Soltaninejad E, Nicknam MH, Nafar M, Sharbafi MH, Keshavarz Shahbaz S, Barabadi M, et al. Altered expression of microRNAs following chronic allograft dysfunction with interstitial fibrosis and tubular atrophy. Iran J Allergy Asthma Immunol. 2015;14(6):615–23.

    PubMed  Google Scholar 

  138. Iwasaki K, Yamamoto T, Inanaga Y, Hiramitsu T, Miwa Y, Murotani K, et al. MiR-142-5p and miR-486-5p as biomarkers for early detection of chronic antibody-mediated rejection in kidney transplantation. Biomarkers. 2017;22(1):45–54. https://doi.org/10.1080/1354750x.2016.1204000.

    Article  CAS  PubMed  Google Scholar 

  139. Mas V, Maluf D, Archer K, Yanek K, Mas L, King A, et al. Establishing the molecular pathways involved in chronic allograft nephropathy for testing new noninvasive diagnostic markers. Transplantation. 2007;83(4):448–57. https://doi.org/10.1097/01.tp.0000251373.17997.9a.

    Article  CAS  PubMed  Google Scholar 

  140. Hope CM, Troelnikov A, Hanf W, Jesudason S, Coates PT, Heeger PS, et al. Peripheral natural killer cell and allo-stimulated T-cell function in kidney transplant recipients associate with cancer risk and immunosuppression-related complications. Kidney Int. 2015;88(6):1374–82. https://doi.org/10.1038/ki.2015.237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán H. Endre.

Ethics declarations

Conflict of interest

ZHE has received travel support from Ortho Diagnostics, Roche Pharmaceuticals and the Novartis Australian Renal Transplant Advisory Board. SH, JE and AYMA declare that they have no conflicts of interest.

Funding

ZHE has received research funding from the Australian National Health and Medical Research Council and the New Zealand Health Research Council. SH has received funding from the Prince of Wales clinical school scholarship, Australia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herath, S., Erlich, J., Au, A.Y.M. et al. Advances in Detection of Kidney Transplant Injury. Mol Diagn Ther 23, 333–351 (2019). https://doi.org/10.1007/s40291-019-00396-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-019-00396-z

Navigation