Skip to main content
Log in

The Role of BEAMing and Digital PCR for Multiplexed Analysis in Molecular Oncology in the Era of Next-Generation Sequencing

  • Leading Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

BEAMing polymerase chain reaction (PCR) and digital PCR (dPCR) are used for robust and accurate quantification of nucleic acids. These methods are particularly well suited for the identification of very small fractions (<1%) of variant copies such as the presence of mutant genes in a predominantly wild-type background. BEAMing and dPCR are increasingly used in diverse fields including bacteriology, virology, non-invasive prenatal testing, and oncology, in particular for the molecular analysis of liquid biopsies. In this review, we present the principles of BEAMing and dPCR as well as the trends of future technical development, focusing on the possibility of developing multiplexed mutation analysis. Finally, we will discuss why such techniques will remain useful despite the ever-decreasing costs and increased automatization of next-generation sequencing (NGS), using molecular characterization of cancer cells as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA. Quantitation of targets for PCR by use of limiting dilution. Biotechniques. 1992;13(3):444–9.

    CAS  PubMed  Google Scholar 

  2. Vogelstein B, Kinzler KW. Digital PCR. Proc Natl Acad Sci USA. 1999;96(16):9236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA. 2003;100(15):8817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li M, Diehl F, Dressman D, Vogelstein B, Kinzler KW. BEAMing up for detection and quantification of rare sequence variants. Nat Methods. 2006;3(2):95–7.

    Article  CAS  PubMed  Google Scholar 

  5. Diehl F, Li M, He Y, Kinzler KW, Vogelstein B, Dressman D. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat Methods. 2006;3(7):551–9.

    Article  CAS  PubMed  Google Scholar 

  6. Benesova L, Belsanova B, Suchanek S, Kopeckova M, Minarikova P, Lipska L, et al. Mutation-based detection and monitoring of cell-free tumor DNA in peripheral blood of cancer patients. Anal Biochem. 2013;433(2):227–34.

    Article  CAS  PubMed  Google Scholar 

  7. Tabernero J, Lenz HJ, Siena S, Sobrero A, Falcone A, Ychou M, et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol. 2015;16(8):937–48.

    Article  CAS  PubMed  Google Scholar 

  8. Thress KS, Brant R, Carr TH, Dearden S, Jenkins S, Brown H, et al. EGFR mutation detection in ctDNA from NSCLC patient plasma: a cross-platform comparison of leading technologies to support the clinical development of AZD9291. Lung Cancer. 2015;90(3):509–15.

    Article  PubMed  Google Scholar 

  9. Sorber L, Zwaenepoel K, Deschoolmeester V, Van Schil PE, Van Meerbeeck J, Lardon F, et al. Circulating cell-free nucleic acids and platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer. 2017;107:100–107.

  10. http://www.sysmex-inostics.com/news-and-events/press-releases/new-liquid-biopsy-ras-testing-for-metastatic-colorectal-cancer-patients-now-available-for-clinical-practices-546.html.

  11. Vynck M, Trypsteen W, Thas O, Vandekerckhove L, De Spiegelaere W. The future of digital polymerase chain reaction in virology. Mol Diagn Ther. 2016;20(5):437–47.

    Article  CAS  PubMed  Google Scholar 

  12. Doi H, Uchii K, Takahara T, Matsuhashi S, Yamanaka H, Minamoto T. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS One. 2015;10(3):e0122763.

    Article  PubMed  PubMed Central  Google Scholar 

  13. El Khattabi LA, Rouillac-Le Sciellour C, Le Tessier D, Luscan A, Coustier A, Porcher R, et al. Could digital PCR be an alternative as a non-invasive prenatal test for trisomy 21: a proof of concept study. PLoS One. 2016;11(5):e0155009.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hudecova I. Digital PCR analysis of circulating nucleic acids. Clin Biochem. 2015;48(15):948–56.

    Article  CAS  PubMed  Google Scholar 

  15. Allenson K, Castillo J, San Lucas FA, Scelo G, Kim DU, Bernard V, et al. High prevalence of mutant KRAS in circulating exosome-derived DNA from early-stage pancreatic cancer patients. Ann Oncol. 2017;28(4):741–7.

    CAS  PubMed  Google Scholar 

  16. Denis JA, Patroni A, Guillerm E, Pepin D, Benali-Furet N, Wechsler J, et al. Droplet digital PCR of circulating tumor cells from colorectal cancer patients can predict KRAS mutations before surgery. Mol Oncol. 2016;10(8):122.

    Article  Google Scholar 

  17. Janku F, Huang HJ, Fujii T, Shelton DN, Madwani K, Fu S, et al. Multiplex KRASG12/G13 mutation testing of unamplified cell-free DNA from the plasma of patients with advanced cancers using droplet digital polymerase chain reaction. Ann Oncol. 2016;28(3):642–50.

    Google Scholar 

  18. Pender A, Garcia-Murillas I, Rana S, Cutts RJ, Kelly G, Fenwick K, et al. Efficient genotyping of KRAS mutant non-small cell lung cancer using a multiplexed droplet digital PCR approach. PLoS One. 2015;10(9):e0139074.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem. 2013;59(12):172.

    Article  Google Scholar 

  20. Zonta E, Garlan F, Pecuchet N, Perez-Toralla K, Caen O, Milbury C, et al. Multiplex detection of rare mutations by picoliter droplet based digital PCR: sensitivity and specificity considerations. PLoS One. 2016;11(7):e015909.

    Article  Google Scholar 

  21. Madic J, Zocevic A, Senlis V, Fradet E, Andre B, Muller S, et al. Three-color crystal digital PCR. Biomol Detect Quantif. 2016;10:34–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang M, Escudero-Ibarz L, Moody S, Zeng N, Clipson A, Huang Y, et al. Somatic mutation screening using archival formalin-fixed, paraffin-embedded tissues by Fluidigm multiplex PCR and Illumina sequencing. J Mol Diagn. 2015;17(5):521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Whale AS, Huggett JF, Tzonev S. Fundamentals of multiplexing with digital PCR. Biomol Detect Quantif. 2016;10:15–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  25. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW. Cancer genome landscapes. Science. 2013;339(6127):1546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vogelstein B, Kinzler KW. The path to cancer—three strikes and you’re out. N Engl J Med. 2015;373(20):1895–8.

    Article  PubMed  Google Scholar 

  27. Tomasetti C, Marchionni L, Nowak MA, Parmigiani G, Vogelstein B. Only three driver gene mutations are required for the development of lung and colorectal cancers. Proc Natl Acad Sci USA. 2015;112(1):118–23.

    Article  CAS  PubMed  Google Scholar 

  28. Escargueil AE, Prado S, Dezaire A, Clairambault J, Larsen AK, Soares DG. Genotype- or phenotype-targeting anticancer therapies? Lessons from tumor evolutionary biology. Curr Pharm Des. 2016;22:6625–44.

    Article  CAS  PubMed  Google Scholar 

  29. Tafe LJ. Molecular mechanisms of therapy resistance in solid tumors: chasing “moving” targets. Virchows Arch. 2017. doi:10.1007/s00428-017-2101-7

  30. Saad N, Poudel A, Basnet A, Gajra A. Epidermal growth factor receptor T790M mutation-positive metastatic non-small-cell lung cancer: focus on osimertinib (AZD9291). Onco Targets Ther. 2017;10:1757–66.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Araldi RP, Modolo DG, de Sa Junior PL, Consonni SR, de Carvalho RF, Roperto FP, et al. Genetics and metabolic deregulation following cancer initiation: a world to explore. Biomed Pharmacother. 2016;82:449–58.

    Article  CAS  PubMed  Google Scholar 

  32. Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66(8):3992–5.

    Article  CAS  PubMed  Google Scholar 

  33. Chi KR. The tumour trail left in blood. Nature. 2016;532(7598):269–71.

    Article  CAS  PubMed  Google Scholar 

  34. Cai X, Janku F, Zhan Q, Fan JB. Accessing genetic information with liquid biopsies. Trends Genet. 2016;31(10):564–75.

    Article  Google Scholar 

  35. Speicher MR, Pantel K. Tumor signatures in the blood. Nat Biotechnol. 2014;32(5):441–3.

    Article  CAS  PubMed  Google Scholar 

  36. Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget. 2016;7(30):48832–41.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Parsons HA, Beaver JA, Park BH. Circulating plasma tumor DNA. Adv Exp Med Biol. 2016;882:259–76.

    Article  PubMed  Google Scholar 

  38. Francis G, Stein S. Circulating cell-free tumour DNA in the management of cancer. Int J Mol Sci. 2016;16(6):14122–42.

    Article  Google Scholar 

  39. Ma M, Zhu H, Zhang C, Sun X, Gao X, Chen G. “Liquid biopsy”-ctDNA detection with great potential and challenges. Ann Transl Med. 2015;3(16):235.

    PubMed  PubMed Central  Google Scholar 

  40. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61(1):112–23.

    Article  CAS  PubMed  Google Scholar 

  41. Alix-Panabieres C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem. 2013;59(1):110–8.

    Article  CAS  PubMed  Google Scholar 

  42. Plaks V, Koopman CD, Werb Z. Cancer. Circulating tumor cells. Science. 2013;341(6151):1186–8.

    Article  CAS  PubMed  Google Scholar 

  43. Tkach M, Thery C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–32.

    Article  CAS  PubMed  Google Scholar 

  44. Liu Y, Cao X. Organotropic metastasis: role of tumor exosomes. Cell Res. 2016;26(2):149–50.

    Article  CAS  PubMed  Google Scholar 

  45. Rak J. Cancer: organ-seeking vesicles. Nature. 2015;527(7578):312–4.

    Article  CAS  PubMed  Google Scholar 

  46. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527(7578):329–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339(6122):959–61.

    Article  CAS  PubMed  Google Scholar 

  48. Nault JC, Zucman-Rossi J. TERT promoter mutations in primary liver tumors. Clin Res Hepatol Gastroenterol. 2016;40(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  49. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015;149(5):1226–39 e4.

  50. Tavares C, Melo M, Cameselle-Teijeiro JM, Soares P, Sobrinho-Simoes M. Endocrine tumours: genetic predictors of thyroid cancer outcome. Eur J Endocrinol. 2016;174(4):R117–26.

    Article  CAS  PubMed  Google Scholar 

  51. Eckel-Passow JE, Lachance DH, Molinaro AM, Walsh KM, Decker PA, Sicotte H, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372(26):2499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Killela PJ, Pirozzi CJ, Healy P, Reitman ZJ, Lipp E, Rasheed BA, et al. Mutations in IDH1, IDH2, and in the TERT promoter define clinically distinct subgroups of adult malignant gliomas. Oncotarget. 2014;5(6):1515–25.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Huang A, Zhang X, Zhou SL, Cao Y, Huang XW, Fan J, et al. Detecting circulating tumor DNA in hepatocellular carcinoma patients using droplet digital PCR is feasible and reflects intratumoral heterogeneity. J Cancer. 2016;7(13):1907–14.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Luthra R, Patel KP, Routbort MJ, Broaddus RR, Yau J, Simien C, et al. A targeted high-throughput next-generation sequencing panel for clinical screening of mutations, gene amplifications, and fusions in solid tumors. J Mol Diagn. 2017;19(2):255–64.

    Article  CAS  PubMed  Google Scholar 

  55. Sheridan C. Milestone approval lifts Illumina’s NGS from research into clinic. Nat Biotechnol. 2014;32(2):111–2.

    Article  CAS  PubMed  Google Scholar 

  56. Kinugasa H, Nouso K, Tanaka T, Miyahara K, Morimoto Y, Dohi C, et al. Droplet digital PCR measurement of HER2 in patients with gastric cancer. Br J Cancer. 2015;112(10):1652–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhu Y, Lu D, Lira ME, Xu Q, Du Y, Xiong J, et al. Droplet digital polymerase chain reaction detection of HER2 amplification in formalin fixed paraffin embedded breast and gastric carcinoma samples. Exp Mol Pathol. 2016;100(2):287–93.

    Article  CAS  PubMed  Google Scholar 

  58. Wang Q, Yang X, He Y, Ma Q, Lin L, Fu P, et al. Droplet digital PCR for absolute quantification of EML4-ALK gene rearrangement in lung adenocarcinoma. J Mol Diagn. 2015;17(5):515–20.

    Article  CAS  PubMed  Google Scholar 

  59. Laurent-Puig P, Pekin D, Normand C, Kotsopoulos SK, Nizard P, Perez-Toralla K, et al. Clinical relevance of KRAS-mutated subclones detected with picodroplet digital PCR in advanced colorectal cancer treated with anti-EGFR therapy. Clin Cancer Res. 2015;21(5):1087–97.

    Article  CAS  PubMed  Google Scholar 

  60. Oxnard GR, Paweletz CP, Kuang Y, Mach SL, O’Connell A, Messineo MM, et al. Noninvasive detection of response and resistance in EGFR-mutant lung cancer using quantitative next-generation genotyping of cell-free plasma DNA. Clin Cancer Res. 2014;20(6):1698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sanmamed MF, Fernandez-Landazuri S, Rodriguez C, Zarate R, Lozano MD, Zubiri L, et al. Quantitative cell-free circulating BRAFV600E mutation analysis by use of droplet digital PCR in the follow-up of patients with melanoma being treated with BRAF inhibitors. Clin Chem. 2015;61(1):297–304.

    Article  CAS  PubMed  Google Scholar 

  62. Watanabe M, Kawaguchi T, Isa S, Ando M, Tamiya A, Kubo A, et al. Ultra-sensitive detection of the pretreatment EGFR T790M mutation in non-small cell lung cancer patients with an EGFR-activating mutation using droplet digital PCR. Clin Cancer Res. 2015;21(15):3552–60.

    Article  CAS  PubMed  Google Scholar 

  63. Lee JY, Qing X, Xiumin W, Yali B, Chi S, Bak SH, et al. Longitudinal monitoring of EGFR mutations in plasma predicts outcomes of NSCLC patients treated with EGFR TKIs: Korean Lung Cancer Consortium (KLCC-12-02). Oncotarget. 2016;7(6):6984–93.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Oellerich M, Schutz E, Beck J, Kanzow P, Plowman PN, Weiss GJ, et al. Using circulating cell-free DNA to monitor personalized cancer therapy. Crit Rev Clin Lab Sci. 2017;10:1–14.

    Google Scholar 

  66. Brychta N, Krahn T, von Ahsen O. Detection of KRAS mutations in circulating tumor DNA by digital PCR in early stages of pancreatic cancer. Clin Chem. 2016;62(11):1482–91.

    Article  CAS  PubMed  Google Scholar 

  67. Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA. 2005;102(45):16368–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Taly V, Pekin D, Benhaim L, Kotsopoulos SK, Le Corre D, Li X, et al. Multiplex picodroplet digital PCR to detect KRAS mutations in circulating DNA from the plasma of colorectal cancer patients. Clin Chem. 2013;59(12):1722–31.

    Article  CAS  PubMed  Google Scholar 

  69. Normanno N, Denis MG, Thress KS, Ratcliffe M, Reck M. Guide to detecting epidermal growth factor receptor (EGFR) mutations in ctDNA of patients with advanced non-small-cell lung cancer. Oncotarget. 2017;8(7):12501–16.

    PubMed  Google Scholar 

  70. Li Z, Zhang Y, Bao W, Jiang C. Insufficiency of peripheral blood as a substitute tissue for detecting EGFR mutations in lung cancer: a meta-analysis. Target Oncol. 2014;9(4):381–8.

    Article  PubMed  Google Scholar 

  71. Zheng D, Ye X, Zhang MZ, Sun Y, Wang JY, Ni J, et al. Plasma EGFR T790M ctDNA status is associated with clinical outcome in advanced NSCLC patients with acquired EGFR-TKI resistance. Sci Rep. 2016;12(6):20913.

    Article  Google Scholar 

  72. Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6(5):479–91.

    Article  CAS  PubMed  Google Scholar 

  73. Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol. 2014;32(5):479–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shaw JA, Guttery DS, Hills A, Fernandez-Garcia D, Page K, Rosales BM, et al. Mutation analysis of cell-free DNA and single circulating tumor cells in metastatic breast cancer patients with high CTC counts. Clin Cancer Res. 2016;23(1):88–96.

  75. Pestrin M, Salvianti F, Galardi F, De Luca F, Turner N, Malorni L, et al. Heterogeneity of PIK3CA mutational status at the single cell level in circulating tumor cells from metastatic breast cancer patients. Mol Oncol. 2015;9(4):749–57.

    Article  CAS  PubMed  Google Scholar 

  76. Fernandez SV, Bingham C, Fittipaldi P, Austin L, Palazzo J, Palmer G, et al. TP53 mutations detected in circulating tumor cells present in the blood of metastatic triple negative breast cancer patients. Breast Cancer Res. 2014;16(5):445.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Gasch C, Pantel K, Riethdorf S. Whole genome amplification in genomic analysis of single circulating tumor cells. Methods Mol Biol. 2015;1347:221–32.

    Article  CAS  PubMed  Google Scholar 

  78. De Luca F, Rotunno G, Salvianti F, Galardi F, Pestrin M, Gabellini S, et al. Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget. 2016;7(18):26107–19.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Huggett JF, Cowen S, Foy CA. Considerations for digital PCR as an accurate molecular diagnostic tool. Clin Chem. 2015;61(1):79–88.

    Article  CAS  PubMed  Google Scholar 

  80. Huggett JF, Foy CA, Benes V, Emslie K, Garson JA, Haynes R, et al. The digital MIQE guidelines: minimum information for publication of quantitative digital PCR experiments. Clin Chem. 2013;59(6):892–902.

    Article  CAS  PubMed  Google Scholar 

  81. Stahlberg A, Krzyzanowski PM, Jackson JB, Egyud M, Stein L, Godfrey TE. Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing. Nucleic Acids Res. 2016;44(11):e105.

    Article  PubMed  PubMed Central  Google Scholar 

  82. http://fluxionbio.com/press-releases/2016/10/27/fluxion-biosciences-launches-spotlight-59-ngs-oncology-panel-for-liquid-biopsies.

  83. https://www.thermofisher.com/fr/fr/home/life-science/cancer-research/cancer-genomics/peripheral-monitoring.html.html.

  84. Albayrak C, Jordi CA, Zechner C, Lin J, Bichsel CA, Khammash M, et al. Digital quantification of proteins and mRNA in single mammalian cells. Mol Cell. 2016;61(6):914–24.

    Article  CAS  PubMed  Google Scholar 

  85. Sartore-Bianchi A, Pietrantonio F, Amatu A, Milione M, Cassingena A, Ghezzi S, et al. Digital PCR assessment of MGMT promoter methylation coupled with reduced protein expression optimises prediction of response to alkylating agents in metastatic colorectal cancer patients. Eur J Cancer. 2016;16(71):43–50.

    Google Scholar 

  86. Barault L, Amatu A, Bleeker FE, Moutinho C, Falcomata C, Fiano V, et al. Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer. Ann Oncol. 2015;26(9):1994–9.

    Article  CAS  PubMed  Google Scholar 

  87. Yu M, Carter KT, Makar KW, Vickers K, Ulrich CM, Schoen RE, et al. MethyLight droplet digital PCR for detection and absolute quantification of infrequently methylated alleles. Epigenetics. 2015;10(9):803–9.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tian H, Sun Y, Liu C, Duan X, Tang W, Li Z. Precise quantitation of microRNA in a single cell with droplet digital PCR based on ligation reaction. Anal Chem. 2016;88(23):11384–11389.

  89. Bellingham SA, Shambrook M, Hill AF. Quantitative analysis of exosomal miRNA via qPCR and digital PCR. Methods Mol Biol. 2017;1545:55–70.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Alexandre Denis.

Ethics declarations

Funding

No specific funding was received for this article.

Conflict of interest

The authors (JAD, EG, FC, AKL & JML) declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denis, J.A., Guillerm, E., Coulet, F. et al. The Role of BEAMing and Digital PCR for Multiplexed Analysis in Molecular Oncology in the Era of Next-Generation Sequencing. Mol Diagn Ther 21, 587–600 (2017). https://doi.org/10.1007/s40291-017-0287-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-017-0287-7

Navigation