Skip to main content
Log in

COLD-PCR Technologies in the Area of Personalized Medicine: Methodology and Applications

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Somatic mutations bear great promise for use as biomarkers for personalized medicine, but are often present only in low abundance in biological material and are therefore difficult to detect. Many assays for mutation analysis in cancer-related genes (hotspots) have been developed to improve diagnosis, prognosis, prediction of drug resistance, and monitoring of the response to treatment. Two major approaches have been developed: mutation-specific amplification methods and methods that enrich and detect mutations without prior knowledge on the exact location and identity of the mutation. CO-amplification at Lower Denaturation temperature Polymerase Chain Reaction (COLD-PCR) methods such as full-, fast-, ice- (improved and complete enrichment), enhanced-ice, and temperature-tolerant COLD-PCR make use of a critical temperature in the polymerase chain reaction to selectively denature wild-type-mutant heteroduplexes, allowing the enrichment of rare mutations. Mutations can subsequently be identified using a variety of laboratory technologies such as high-resolution melting, digital polymerase chain reaction, pyrosequencing, Sanger sequencing, or next-generation sequencing. COLD-PCR methods are sensitive, specific, and accurate if appropriately optimized and have a short time to results. A large variety of clinical samples (tumor DNA, circulating cell-free DNA, circulating cell-free fetal DNA, and circulating tumor cells) have been studied using COLD-PCR in many different applications including the detection of genetic changes in cancer and infectious diseases, non-invasive prenatal diagnosis, detection of microorganisms, or DNA methylation analysis. In this review, we describe in detail the different COLD-PCR approaches, highlighting their specificities, advantages, and inconveniences and demonstrating their use in different fields of biological and biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schwarzenbach H, Hoon DS, Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11(6):426–37. doi:10.1038/nrc3066.

    Article  CAS  PubMed  Google Scholar 

  2. Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86. doi:10.1200/JCO.2012.45.2011.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heitzer E, Ulz P, Geigl JB. Circulating tumor DNA as a liquid biopsy for cancer. Clin Chem. 2015;61(1):112–23. doi:10.1373/clinchem.2014.222679.

    Article  CAS  PubMed  Google Scholar 

  4. Yu B, O’Toole SA, Trent RJ. Somatic DNA mutation analysis in targeted therapy of solid tumours. Transl Pediatr. 2015;4(2):125–38. doi:10.3978/j.issn.2224-4336.2015.04.04.

    PubMed  PubMed Central  Google Scholar 

  5. Que D, Xiao H, Zhao B, et al. EGFR mutation status in plasma and tumor tissues in non-small cell lung cancer serves as a predictor of response to EGFR-TKI treatment. Cancer Biol Ther. 2016;17(3):320–7. doi:10.1080/15384047.2016.1139238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martellucci J, Alemanno G, Castiglione F, et al. Role of KRAS mutation as predictor of pathologic response after neoadjuvant chemoradiation therapy for rectal cancer. Updates Surg. 2015;67(1):47–53. doi:10.1007/s13304-015-0281-8.

    Article  PubMed  Google Scholar 

  7. Tsao SC, Weiss J, Hudson C, et al. Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Sci Rep. 2015;5:11198. doi:10.1038/srep11198.

    Article  PubMed  Google Scholar 

  8. Landegren U, Nilsson M, Kwok PY. Reading bits of genetic information: methods for single-nucleotide polymorphism analysis. Genome Res. 1998;8(8):769–76.

    Article  CAS  PubMed  Google Scholar 

  9. Kinde I, Wu J, Papadopoulos N, et al. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci. 2011;108(23):9530–5. doi:10.1073/pnas.1105422108.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gregory MT, Bertout JA, Ericson NG, et al. Targeted single molecule mutation detection with massively parallel sequencing. Nucleic Acids Res. 2016;44(3):e22. doi:10.1093/nar/gkv915.

    Article  PubMed  Google Scholar 

  11. Newton CR, Graham A, Heptinstall LE, et al. Analysis of any point mutation in DNA: the amplification refractory mutation system (ARMS). Nucleic Acids Res. 1989;17(7):2503–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Angulo B, Garcia-Garcia E, Martinez R, et al. A commercial real-time PCR kit provides greater sensitivity than direct sequencing to detect KRAS mutations: a morphology-based approach in colorectal carcinoma. J Mol Diagn. 2010;12(3):292–9. doi:10.2353/jmoldx.2010.090139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kristensen LS, Andersen GB, Hager H, Hansen LL. Competitive amplification of differentially melting amplicons (CADMA) enables sensitive and direct detection of all mutation types by high-resolution melting analysis. Hum Mutat. 2012;33(1):264–71. doi:10.1002/humu.21598.

    Article  CAS  PubMed  Google Scholar 

  14. Wittwer CT, Reed GH, Gundry CN, et al. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem. 2003;49(6 Pt 1):853–60.

    Article  CAS  PubMed  Google Scholar 

  15. Vossen RH, Aten E, Roos A, den Dunnen JT. High-resolution melting analysis (HRMA): more than just sequence variant screening. Hum Mutat. 2009;30(6):860–6. doi:10.1002/humu.21019.

    Article  CAS  PubMed  Google Scholar 

  16. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci. 1977;74(12):5463–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McGinn S, Gut IG. DNA sequencing: spanning the generations. New Biotechnol. 2013;30(4):366–72. doi:10.1016/j.nbt.2012.11.012.

    Article  CAS  Google Scholar 

  18. Ogino S, Kawasaki T, Brahmandam M, et al. Sensitive sequencing method for KRAS mutation detection by pyrosequencing. J Mol Diagn. 2005;7(3):413–21. doi:10.1016/S1525-1578(10)60571-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science. 1998;281(5375):363, 5.

  20. Ronaghi M. Pyrosequencing sheds light on DNA sequencing. Genome Res. 2001;11(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  21. Ahmadian A, Ehn M, Hober S. Pyrosequencing: history, biochemistry and future. Clin Chim Acta. 2006;363(1–2):83–94. doi:10.1016/j.cccn.2005.04.038.

    Article  CAS  PubMed  Google Scholar 

  22. Beadling C, Neff TL, Heinrich MC, et al. Combining highly multiplexed PCR with semiconductor-based sequencing for rapid cancer genotyping. J Mol Diagn. 2013;15(2):171–6. doi:10.1016/j.jmoldx.2012.09.003.

    Article  CAS  PubMed  Google Scholar 

  23. Geurts-Giele WR, Dirkx-van der Velden AW, Bartalits NM, et al. Molecular diagnostics of a single multifocal non-small cell lung cancer case using targeted next generation sequencing. Virchows Archiv. 2013;462(2):249–54. doi:10.1007/s00428-012-1346-4.

    Article  CAS  PubMed  Google Scholar 

  24. Malapelle U, Vigliar E, Sgariglia R, et al. Ion Torrent next-generation sequencing for routine identification of clinically relevant mutations in colorectal cancer patients. J Clin Pathol. 2015;68(1):64–8. doi:10.1136/jclinpath-2014-202691.

    Article  PubMed  Google Scholar 

  25. Rothberg JM, Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing. Nature. 2011;475(7356):348–52. doi:10.1038/nature10242.

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Wang L, Mamon H, et al. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing. Nat Med. 2008;14(5):579–84.

    Article  CAS  PubMed  Google Scholar 

  27. Galbiati S, Brisci A, Lalatta F, et al. Full COLD-PCR protocol for noninvasive prenatal diagnosis of genetic diseases. Clin Chem. 2011;57(1):136–8. doi:10.1373/clinchem.2010.155671.

    Article  CAS  PubMed  Google Scholar 

  28. Kristensen LS, Daugaard IL, Christensen M, et al. Increased sensitivity of KRAS mutation detection by high-resolution melting analysis of COLD-PCR products. Hum Mutat. 2010;31(12):1366–73. doi:10.1002/humu.21358.

    Article  CAS  PubMed  Google Scholar 

  29. Mancini I, Santucci C, Sestini R, et al. The use of COLD-PCR and high-resolution melting analysis improves the limit of detection of KRAS and BRAF mutations in colorectal cancer. J Mol Diagn. 2010;12(5):705–11. doi:10.2353/jmoldx.2010.100018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Milbury CA, Li J, Makrigiorgos GM. Ice-COLD-PCR enables rapid amplification and robust enrichment for low-abundance unknown DNA mutations. Nucleic Acids Res. 2011;39(1):e2. doi:10.1093/nar/gkq899.

    Article  PubMed  Google Scholar 

  31. Iengar P. An analysis of substitution, deletion and insertion mutations in cancer genes. Nucleic Acids Res. 2012;40(14):6401–13. doi:10.1093/nar/gks290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li J, Milbury CA, Li C, Makrigiorgos GM. Two-round coamplification at lower denaturation temperature-PCR (COLD-PCR)-based sanger sequencing identifies a novel spectrum of low-level mutations in lung adenocarcinoma. Hum Mutat. 2009;30(11):1583–90. doi:10.1002/humu.21112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Milbury CA, Li J, Makrigiorgos GM. COLD-PCR-enhanced high-resolution melting enables rapid and selective identification of low-level unknown mutations. Clin Chem. 2009;55(12):2130–43. doi:10.1373/clinchem.2009.131029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li J, Wang L, Janne PA, Makrigiorgos GM. Coamplification at lower denaturation temperature-PCR increases mutation-detection selectivity of TaqMan-based real-time PCR. Clin Chem. 2009;55(4):748–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Castellanos-Rizaldos E, Paweletz C, Song C, et al. Enhanced ratio of signals enables digital mutation scanning for rare allele detection. J Mol Diagn. 2015;17(3):284–92. doi:10.1016/j.jmoldx.2014.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. How Kit A, Mazaleyrat N, Daunay A, et al. Sensitive detection of KRAS mutations using enhanced-ice-COLD-PCR mutation enrichment and direct sequence identification. Hum Mutat. 2013;34(11):1568–80. doi:10.1002/humu.22427.

    Article  PubMed  Google Scholar 

  37. Milbury CA, Correll M, Quackenbush J, et al. COLD-PCR enrichment of rare cancer mutations prior to targeted amplicon resequencing. Clin Chem. 2012;58(3):580–9. doi:10.1373/clinchem.2011.176198.

    Article  CAS  PubMed  Google Scholar 

  38. You Y, Moreira BG, Behlke MA, Owczarzy R. Design of LNA probes that improve mismatch discrimination. Nucleic Acids Res. 2006;34(8):e60. doi:10.1093/nar/gkl175.

    Article  PubMed  PubMed Central  Google Scholar 

  39. How-Kit A, Lebbe C, Bousard A, et al. Ultrasensitive detection and identification of BRAF V600 mutations in fresh frozen, FFPE, and plasma samples of melanoma patients by E-ice-COLD-PCR. Anal Bioanal Chem. 2014;406(22):5513–20. doi:10.1007/s00216-014-7975-5.

    Article  CAS  PubMed  Google Scholar 

  40. How-Kit A, Tost J. Pyrosequencing(R)-based identification of low-frequency mutations enriched through enhanced-ice-COLD-PCR. Methods Mol Biol. 2015;1315:83–101. doi:10.1007/978-1-4939-2715-9_7.

    Article  PubMed  Google Scholar 

  41. Sefrioui D, Mauger F, Leclere L, et al. Comparison of the quantification of KRAS mutations by digital PCR and E-ice-COLD-PCR in circulating-cell-free DNA from metastatic colorectal cancer patients. Clin Chim Acta. 2016;465:1–4. doi:10.1016/j.cca.2016.12.004.

    Article  PubMed  Google Scholar 

  42. Charbel C, Fontaine RH, Malouf GG, et al. NRAS mutation is the sole recurrent somatic mutation in large congenital melanocytic nevi. J Invest Dermatol. 2014;134(4):1067–74. doi:10.1038/jid.2013.429.

    Article  CAS  PubMed  Google Scholar 

  43. Castellanos-Rizaldos E, Liu P, Milbury CA, et al. Temperature-tolerant COLD-PCR reduces temperature stringency and enables robust mutation enrichment. Clin Chem. 2012;58(7):1130–8. doi:10.1373/clinchem.2012.183095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Castellanos-Rizaldos E, Richardson K, Lin R, et al. Single-tube, highly parallel mutation enrichment in cancer gene panels by use of temperature-tolerant COLD-PCR. Clin Chem. 2015;61(1):267–77. doi:10.1373/clinchem.2014.228361.

    Article  CAS  PubMed  Google Scholar 

  45. Castellanos-Rizaldos E, Milbury CA, Makrigiorgos GM. Enrichment of mutations in multiple DNA sequences using COLD-PCR in emulsion. PloS One. 2012;7(12):e51362. doi:10.1371/journal.pone.0051362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Milbury CA, Chen CC, Mamon H, et al. Multiplex amplification coupled with COLD-PCR and high resolution melting enables identification of low-abundance mutations in cancer samples with low DNA content. J Mol Diagn. 2011;13(2):220–32. doi:10.1016/j.jmoldx.2010.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mauger F, Daunay A, Deleuze JF, et al. Multiplexing of E-ice-COLD-PCR assays for mutation detection and identification. Clin Chem. 2016;62(8):1155–8. doi:10.1373/clinchem.2016.258830.

    Article  CAS  PubMed  Google Scholar 

  48. Suspene R, Renard M, Henry M, et al. Inversing the natural hydrogen bonding rule to selectively amplify GC-rich ADAR-edited RNAs. Nucleic Acids Res. 2008;36(12):e72. doi:10.1093/nar/gkn295.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Guha M, Castellanos-Rizaldos E, Liu P, et al. Differential strand separation at critical temperature: a minimally disruptive enrichment method for low-abundance unknown DNA mutations. Nucleic Acids Res. 2013;41(3):e50. doi:10.1093/nar/gks1250.

    Article  CAS  PubMed  Google Scholar 

  50. Song C, Liu Y, Fontana R, et al. Elimination of unaltered DNA in mixed clinical samples via nuclease-assisted minor-allele enrichment. Nucleic Acids Res. 2016;44(19):e146. doi:10.1093/nar/gkw650.

    PubMed  PubMed Central  Google Scholar 

  51. Song C, Milbury CA, Li J, et al. Rapid and sensitive detection of KRAS mutation after fast-COLD-PCR enrichment and high-resolution melting analysis. Diagn Mol Pathol B. 2011;20(2):81–9. doi:10.1097/PDM.0b013e3181fde92f.

    Article  CAS  Google Scholar 

  52. Paganini I, Mancini I, Baroncelli M, et al. Application of COLD-PCR for improved detection of NF2 mosaic mutations. J Mol Diagn. 2014;16(4):393–9. doi:10.1016/j.jmoldx.2014.02.007.

    Article  CAS  PubMed  Google Scholar 

  53. Macher HC, Martinez-Broca MA, Rubio-Calvo A, et al. Non-invasive prenatal diagnosis of multiple endocrine neoplasia type 2A using COLD-PCR combined with HRM genotyping analysis from maternal serum. PloS One. 2012;7(12):e51024. doi:10.1371/journal.pone.0051024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Freidin MB, Freydina DV, Leung M, et al. Circulating tumor DNA outperforms circulating tumor cells for KRAS mutation detection in thoracic malignancies. Clin Chem. 2015;61(10):1299–304. doi:10.1373/clinchem.2015.242453.

    Article  CAS  PubMed  Google Scholar 

  55. Tost J. The clinical potential of enhanced-ice-COLD-PCR. Expert Rev Mol Diagn. 2016;16(3):265–8. doi:10.1586/14737159.2016.1123623.

    Article  CAS  PubMed  Google Scholar 

  56. Mairinger FD, Vollbrecht C, Streubel A, et al. The “COLD-PCR approach” for early and cost-effective detection of tyrosine kinase inhibitor resistance mutations in EGFR-positive non-small cell lung cancer. Appl Immunohistochem Mol Morphol. 2014;22(2):114–8. doi:10.1097/PDM.0b013e31829a638d.

    Article  CAS  PubMed  Google Scholar 

  57. Carotenuto P, Roma C, Cozzolino S, et al. Detection of KRAS mutations in colorectal cancer with Fast COLD-PCR. Int J Oncol. 2012;40(2):378–84. doi:10.3892/ijo.2011.1221.

    CAS  PubMed  Google Scholar 

  58. Santis G, Angell R, Nickless G, et al. Screening for EGFR and KRAS mutations in endobronchial ultrasound derived transbronchial needle aspirates in non-small cell lung cancer using COLD-PCR. PloS One. 2011;6(9):e25191. doi:10.1371/journal.pone.0025191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pinzani P, Santucci C, Mancini I, et al. BRAFV600E detection in melanoma is highly improved by COLD-PCR. Clin Chim Acta. 2011;412(11–12):901–5. doi:10.1016/j.cca.2011.01.014.

    Article  CAS  PubMed  Google Scholar 

  60. Wang AX, Chang JW, Li CY, et al. H-ras mutation detection in bladder cancer by COLD-PCR analysis and direct sequencing. Urol Int. 2012;88(3):350–7. doi:10.1159/000336132.

    Article  PubMed  Google Scholar 

  61. Song C, Castellanos-Rizaldos E, Bejar R, et al. DMSO increases mutation scanning detection sensitivity of high-resolution melting in clinical samples. Clin Chem. 2015;61(11):1354–62. doi:10.1373/clinchem.2015.245357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boisselier B, Marie Y, Labussiere M, et al. COLD PCR HRM: a highly sensitive detection method for IDH1 mutations. Hum Mutat. 2010;31(12):1360–5. doi:10.1002/humu.21365.

    Article  CAS  PubMed  Google Scholar 

  63. Delaney D, Diss TC, Presneau N, et al. GNAS1 mutations occur more commonly than previously thought in intramuscular myxoma. Mod Pathol. 2009;22(5):718–24. doi:10.1038/modpathol.2009.32.

    Article  CAS  PubMed  Google Scholar 

  64. Yousem SA, Dacic S, Nikiforov YE, Nikiforova M. Pulmonary Langerhans cell histiocytosis: profiling of multifocal tumors using next-generation sequencing identifies concordant occurrence of BRAF V600E mutations. Chest. 2013;143(6):1679–84. doi:10.1378/chest.12-1917.

    Article  CAS  PubMed  Google Scholar 

  65. Brisci A, Damin F, Pietra D, et al. COLD-PCR and innovative microarray substrates for detecting and genotyping MPL exon 10 W515 substitutions. Clin Chem. 2012;58(12):1692–702. doi:10.1373/clinchem.2012.192708.

    Article  CAS  PubMed  Google Scholar 

  66. Charbel C, Fontaine RH, Kadlub N, et al. Clonogenic cell subpopulations maintain congenital melanocytic nevi. J Invest Dermatol. 2015;135(3):824–33. doi:10.1038/jid.2014.437.

    Article  CAS  PubMed  Google Scholar 

  67. Mourah S, How-Kit A, Meignin V, et al. Recurrent NRAS mutations in pulmonary Langerhans cell histiocytosis. Eur Respir J. 2016;47(6):1785–96. doi:10.1183/13993003.01677-2015.

    Article  PubMed  Google Scholar 

  68. Murphy DM, Bejar R, Stevenson K, et al. NRAS mutations with low allele burden have independent prognostic significance for patients with lower risk myelodysplastic syndromes. Leukemia. 2013;27(10):2077–81. doi:10.1038/leu.2013.160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lewandowska MA, Furtak J, Szylberg T, et al. An analysis of the prognostic value of IDH1 (isocitrate dehydrogenase 1) mutation in Polish glioma patients. Mol Diagn Ther. 2014;18(1):45–53. doi:10.1007/s40291-013-0050-7.

    Article  CAS  PubMed  Google Scholar 

  70. Hashida S, Soh J, Toyooka S, et al. Presence of the minor EGFR T790M mutation is associated with drug-sensitive EGFR mutations in lung adenocarcinoma patients. Oncol Rep. 2014;32(1):145–52. doi:10.3892/or.2014.3197.

    CAS  PubMed  Google Scholar 

  71. Mourah S, Lorillon G, Meignin V, et al. Dramatic transient improvement of metastatic BRAF(V600E)-mutated Langerhans cell sarcoma under treatment with dabrafenib. Blood. 2015;126(24):2649–52. doi:10.1182/blood-2015-06-650036.

    Article  CAS  PubMed  Google Scholar 

  72. Lorillon G, Mourah S, Vercellino L, et al. Sustained response to salvage therapy for dabrafenib-resistant metastatic Langerhans cell sarcoma. Ann Oncol. 2016. doi:10.1093/annonc/mdw299 (pii: mdw299, Epub ahead of print).

  73. Liu C, Lin J, Chen H, et al. Detection of hepatitis B virus genotypic resistance mutations by coamplification at lower denaturation temperature-PCR coupled with sanger sequencing. J Clin Microbiol. 2014;52(8):2933–9. doi:10.1128/JCM.01127-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wong DK, Tsoi O, Huang FY, et al. Application of coamplification at lower denaturation temperature-PCR sequencing for early detection of antiviral drug resistance mutations of hepatitis B virus. J Clin Microbiol. 2014;52(9):3209–15. doi:10.1128/JCM.00343-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Du J, Zou X, Pan Y, et al. Non-invasive prenatal molecular detection of a fetal point mutation for congenital adrenal hyperplasia using co-amplification at lower denaturation temperature PCR. Chin Med J. 2010;123(22):3343–6.

    CAS  PubMed  Google Scholar 

  76. Galbiati S, Stenirri S, Sbaiz L, et al. Identification of an 18 bp deletion in the TWIST1 gene by CO-amplification at lower denaturation temperature-PCR (COLD-PCR) for non-invasive prenatal diagnosis of craniosynostosis: first case report. Clin Chem Lab Med. 2014;52(4):505–9. doi:10.1515/cclm-2013-0757.

    Article  CAS  PubMed  Google Scholar 

  77. Rivera-Pedroza CI, Heath KE. Reply to the article entitled “Identification of an 18 bp deletion in the TWIST1 gene by CO-amplification at lower denaturation temperature-PCR (COLD-PCR) for non-invasive prenatal diagnosis of craniosynostosis: first case report” by Galbiati et al. Clin Chem Lab Med. 2014;52(4):505–9. doi:10.1515/cclm-2013-1076.

    Google Scholar 

  78. Galbiati S, Monguzzi A, Damin F, et al. COLD-PCR and microarray: two independent highly sensitive approaches allowing the identification of fetal paternally inherited mutations in maternal plasma. J Med Genet. 2016;53(7):481–7. doi:10.1136/jmedgenet-2015-103229.

    Article  PubMed  Google Scholar 

  79. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010;31(1):27–36. doi:10.1093/carcin/bgp220.

    Article  CAS  PubMed  Google Scholar 

  80. How Kit A, Nielsen HM, Tost J. DNA methylation based biomarkers: practical considerations and applications. Biochimie. 2012;94(11):2314–37. doi:10.1016/j.biochi.2012.07.014.

    Article  CAS  PubMed  Google Scholar 

  81. Castellanos-Rizaldos E, Milbury CA, Karatza E, et al. COLD-PCR amplification of bisulfite-converted DNA allows the enrichment and sequencing of rare un-methylated genomic regions. PloS One. 2014;9(4):e94103. doi:10.1371/journal.pone.0094103.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Steven McGinn (Centre National de Génotypage) for critical reading of the manuscript.

Authors contributions

FM, AH, and JT reviewed the literature and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Tost.

Ethics declarations

Funding

Work in the laboratory of JT is supported by Grants from the Agence Nationale de Recherche (ANR-13-EPIG-0003-05 and ANR-13-CESA-0011-05), Aviesan/INSERM (EPIG2014-01 and EPlG2014-18), and INCa (PRT-K14-049), a Sirius research award (UCB Pharma S.A.), a Passerelle research award (Pfizer), iCARE (MSD Avenir), and the institutional budget of the Centre National de Génotypage.

Conflict of interest

Florence Mauger, Alexandre How-Kit, and Jörg Tost declare no conflicts of interest.

Additional information

F. Mauger and A. How-Kit contributed equally and should be considered as joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauger, F., How-Kit, A. & Tost, J. COLD-PCR Technologies in the Area of Personalized Medicine: Methodology and Applications. Mol Diagn Ther 21, 269–283 (2017). https://doi.org/10.1007/s40291-016-0254-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0254-8

Keywords

Navigation