Skip to main content
Log in

Quantitative Assessment of CYP2C9 Genetic Polymorphisms Effect on the Oral Clearance of S-Warfarin in Healthy Subjects

  • Original Research Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Background

Genetic polymorphisms in CYP2C9 account for 10–20% of the variability in warfarin dose requirement. As such CYP2C9 genetic polymorphisms are commonly included in algorithms aimed to optimize warfarin therapy as a way to account for variability in warfarin responsiveness that is due to altered pharmacokinetics. However, most of the currently available pharmacokinetic data were derived from studies among patients on chronic warfarin therapy and therefore suffer from the confounding effects of disease states and drug interactions.

Objective

The purpose of the present study was to provide an accurate quantitative estimate of S-warfarin oral clearance (CLS) among healthy subjects carrying different CYP2C9 genotypes.

Methods

Single dose of warfarin was administered to 150 non-smokers, age (mean ± SD) 23.3 ± 4.5 years, 60% male, non-obese, healthy subjects. Blood samples were taken for up to 168 h and urine was collected over the entire study period.

Results

Compared with carriers of the wild-type CYP2C9*1/*1 genotype (n = 69), CLS was reduced by 25, 39 and 47% among heterozygote for CYP2C9*2 (n = 41) CYP2C9*3 (n = 26) and carriers of 2 variant alleles (n = 14), respectively (p < 0.001). The corresponding decrease in the formation clearance of 6 and 7 S-hydroxy-warfarin was 45, 65 and 75%, respectively (p < 0.001).

Conclusions

The current study provides an estimate concerning the effect of CYP2C9 polymorphisms on S-warfarin pharmacokinetics among healthy subjects. As such it is free of the confounding effects of disease states and drug interactions. Further research is needed to evaluate whether the incorporation of quantitative data obtained in the present study into pharmacogenetic warfarin algorithm may enhance its precision.

Trial registration: Clinicaltrials.gov Identifier NCT00162474.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hylek EM, Singer DE. Risk factors for intracranial hemorrhage in outpatients taking warfarin. Ann Intern Med. 1994;120:897–902.

    Article  CAS  PubMed  Google Scholar 

  2. Voora D, McLeod HL, Eby C, Gage BF. The pharmacogenetics of coumarin therapy. Pharmacogenomics. 2005;6:503–13.

    Article  CAS  PubMed  Google Scholar 

  3. Landefeld CS, Goldman L. Major bleeding in outpatients treated with warfarin: incidence and prediction by factors known at the start of outpatient therapy. Am J Med. 1989;87:144–52.

    Article  CAS  PubMed  Google Scholar 

  4. Rikala M, Kastarinen H, Tiittanen P, Huupponen R, Korhonen MJ. Natural history of bleeding and characteristics of early bleeders among warfarin initiators—a cohort study in Finland. Clin Epidemiol. 2016;8:23–35.

    PubMed  PubMed Central  Google Scholar 

  5. Bungard TJ, Ghali WA, Teo KK, McAlister FA, Tsuyuki RT. Why do patients with atrial fibrillation not receive warfarin? Arch Intern Med. 2000;160:41–6.

    Article  CAS  PubMed  Google Scholar 

  6. Johnson JA, Cavallari LH. Warfarin pharmacogenetics. Trends Cardiovasc Med. 2015;25:33–41.

    Article  CAS  PubMed  Google Scholar 

  7. Baker WL, Johnson SG. Pharmacogenetics and oral antithrombotic drugs. Curr Opin Pharmacol. 2016;27:38–42.

    Article  CAS  PubMed  Google Scholar 

  8. Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther. 2008;83:460–70.

    Article  CAS  PubMed  Google Scholar 

  9. Scordo MG, Pengo V, Spina E, Dahl ML, Gusella M, Padrini R. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther. 2002;72:702–10.

    Article  CAS  PubMed  Google Scholar 

  10. Kamali F, Khan TI, King BP, Frearson R, Kesteven P, Wood P, et al. Contribution of age, body size, and CYP2C9 genotype to anticoagulant response to warfarin. Clin Pharmacol Ther. 2004;75:204–12.

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi H, Kashima T, Nomizo Y, Muramoto N, Shimizu T, Nasu K, et al. Metabolism of warfarin enantiomers in Japanese patients with heart disease having different CYP2C9 and CYP2C19 genotypes. Clin Pharmacol Ther. 1998;63:519–28.

    Article  CAS  PubMed  Google Scholar 

  12. Rettie AE, Korzekwa KR, Kunze KL, Lawrence RF, Eddy AC, Aoyama T, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol. 1992;5:54–9.

    Article  CAS  PubMed  Google Scholar 

  13. Kaminsky LS, Zhang ZY. Human P450 metabolism of warfarin. Pharmacol Ther. 1997;73:67–74.

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet. 2001;40:587–603.

    Article  CAS  PubMed  Google Scholar 

  15. Herman D, Locatelli I, Grabnar I, Peternel P, Stegnar M, Mrhar A, et al. Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J. 2005;5:193–202.

    Article  CAS  PubMed  Google Scholar 

  16. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106:2329–33.

    Article  CAS  PubMed  Google Scholar 

  17. Carlquist JF, Horne BD, Muhlestein JB, Lappé DL, Whiting BM, Kolek MJ, et al. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J Thromb Thrombolysis. 2006;22:191–7.

    Article  CAS  PubMed  Google Scholar 

  18. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84:326–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data. N Engl J Med. 2009;360:753–64.

    Article  Google Scholar 

  20. Anderson JL, Horne BD, Stevens SM, Grove AS, Barton S, Nicholas ZP, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation. 2007;116:2563–70.

    Article  CAS  PubMed  Google Scholar 

  21. Anderson JL, Horne BD, Stevens SM, Woller SC, Samuelson KM, Mansfield JW, et al. A randomized and clinical effectiveness trial comparing two pharmacogenetic algorithms and standard care for individualizing warfarin dosing (CoumaGen-II). Circulation. 2012;125:1997–2005.

    Article  CAS  PubMed  Google Scholar 

  22. Kimmel SE, French B, Kasner SE, Johnson JA, Anderson JL, Gage BF, et al. A pharmacogenetic versus a clinical algorithm for warfarin dosing. N Engl J Med. 2013;369:2283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takahashi H, Wilkinson GR, Caraco Y, Muszkat M, Kim RB, Kashima T, et al. Population differences in S-warfarin metabolism between CYP2C9 genotype-matched Caucasian and Japanese patients. Clin Pharmacol Ther. 2003;73:253–63.

    Article  CAS  PubMed  Google Scholar 

  24. Linder MW, Looney S, Adams JE 3rd, Johnson N, Antonino-Green D, Lacefield N, et al. Warfarin dose adjustments based on CYP2C9 genetic polymorphisms. J Thromb Thrombolysis. 2002;14:227–32.

    Article  CAS  PubMed  Google Scholar 

  25. Hamberg AK, Wadelius M, Lindh JD, Dahl ML, Padrini R, Deloukas P, et al. A pharmacometric model describing the relationship between warfarin dose and INR response with respect to variations in CYP2C9, VKORC1, and age. Clin Pharmacol Ther. 2010;87:727–34.

    Article  CAS  PubMed  Google Scholar 

  26. Gong IY, Schwarz UI, Crown N, Dresser GK, Lazo-Langner A, Zou G, et al. Clinical and genetic determinants of warfarin pharmacokinetics and pharmacodynamics during treatment initiation. PLoS One. 2011;6:e27808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lane S, Al-Zubiedi S, Hatch E, Matthews I, Jorgensen AL, Deloukas P, et al. The population pharmacokinetics of R- and S-warfarin: effect of genetic and clinical factors. Br J Clin Pharmacol. 2012;73:66–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jensen BP, Chin PK, Roberts RL, Begg EJ. Influence of adult age on the total and free clearance and protein binding of (R)- and (S)-warfarin. Br J Clin Pharmacol. 2012;74:797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Uno T, Sugimoto K, Sugawara K, Tateishi T. The effect of CYP2C19 genotypes on the pharmacokinetics of warfarin enantiomers. J Clin Pharm Ther. 2008;33:67–73.

    Article  CAS  PubMed  Google Scholar 

  30. Chang M, Soderberg MM, Scordo MG, Tybring G, Dahl ML. CYP2C19*17 affects R-warfarin plasma clearance and warfarin INR/dose in patients on stable warfarin maintenance. Eur J Clin Pharmacol. 2015;71:433–9.

    Article  CAS  PubMed  Google Scholar 

  31. Perera MA, Cavallari LH, Johnson JA. Warfarin pharmacogenetics: an illustration of the importance of studies in minority populations. Clin Pharmacol Ther. 2014;95:242–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoseph Caraco.

Ethics declarations

Conflict of interest

Chanan Shaul declares no conflicts of interest. Simcha Blotnick declares no conflicts of interest. Mordechai Muszkat declares no conflicts of interest. Meir Bialer declares no conflicts of interest. Yoseph Caraco declares no conflicts of interest.

Funding

The corresponding author (YC) received a grant from the Bi-National US-Israeli Science Foundation (BSF) (Grant # 2003229).

Approval by the ethic committee and informed consent

The study protocol was approved by the Hadassah Institutional Review Board and following a detailed explanation all subjects signed an informed consent (Approval number: Warfarin PK, 8-19.12.03).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaul, C., Blotnick, S., Muszkat, M. et al. Quantitative Assessment of CYP2C9 Genetic Polymorphisms Effect on the Oral Clearance of S-Warfarin in Healthy Subjects. Mol Diagn Ther 21, 75–83 (2017). https://doi.org/10.1007/s40291-016-0247-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0247-7

Keywords

Navigation