Skip to main content
Log in

Just How Confident Can We Be in Predicting Sports Injuries? A Systematic Review of the Methodological Conduct and Performance of Existing Musculoskeletal Injury Prediction Models in Sport

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

An increasing number of musculoskeletal injury prediction models are being developed and implemented in sports medicine. Prediction model quality needs to be evaluated so clinicians can be informed of their potential usefulness.

Objective

To evaluate the methodological conduct and completeness of reporting of musculoskeletal injury prediction models in sport.

Methods

A systematic review was performed from inception to June 2021. Studies were included if they: (1) predicted sport injury; (2) used regression, machine learning, or deep learning models; (3) were written in English; (4) were peer reviewed.

Results

Thirty studies (204 models) were included; 60% of studies utilized only regression methods, 13% only machine learning, and 27% both regression and machine learning approaches. All studies developed a prediction model and no studies externally validated a prediction model. Two percent of models (7% of studies) were low risk of bias and 98% of models (93% of studies) were high or unclear risk of bias. Three studies (10%) performed an a priori sample size calculation; 14 (47%) performed internal validation. Nineteen studies (63%) reported discrimination and two (7%) reported calibration. Four studies (13%) reported model equations for statistical predictions and no machine learning studies reported code or hyperparameters.

Conclusion

Existing sport musculoskeletal injury prediction models were poorly developed and have a high risk of bias. No models could be recommended for use in practice. The majority of models were developed with small sample sizes, had inadequate assessment of model performance, and were poorly reported. To create clinically useful sports musculoskeletal injury prediction models, considerable improvements in methodology and reporting are urgently required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hootman JM, Dick R, Agel J. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train. 2007;42(2):311.

    PubMed  PubMed Central  Google Scholar 

  2. Knowles SB, Marshall SW, Miller T, Spicer R, Bowling JM, Loomis D, et al. Cost of injuries from a prospective cohort study of North Carolina high school athletes. Inj Prevent. 2007;13(6):416–21.

    Article  CAS  Google Scholar 

  3. Cai H, Bullock GS, Sanchez-Santos MT, Peirce N, Arden NK, Filbay SR. Joint pain and osteoarthritis in former recreational and elite cricketers. BMC Musculoskelet Disord. 2019;20(1):596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bullock GS, Collins GS, Peirce N, Arden NK, Filbay SR. Playing sport injured is associated with osteoarthritis, joint pain and worse health-related quality of life: a cross-sectional study. BMC Musculoskelet Disord. 2020;21(1):1–11.

    Article  Google Scholar 

  5. Whittaker JL, Woodhouse LJ, Nettel-Aguirre A, Emery CA. Outcomes associated with early post-traumatic osteoarthritis and other negative health consequences 3–10 years following knee joint injury in youth sport. Osteoarthr Cartil. 2015;23(7):1122–9.

    Article  CAS  Google Scholar 

  6. Filbay S, Culvenor A, Ackerman I, Russell T, Crossley K. Quality of life in anterior cruciate ligament-deficient individuals: a systematic review and meta-analysis. Br J Sport Med. 2015;49(16):1033–41.

    Article  CAS  Google Scholar 

  7. Levy AS, Lintner S, Kenter K, Speer KP. Intra-and interobserver reproducibility of the shoulder laxity examination. Am J Sport Med. 1999;27(4):460–3.

    Article  CAS  Google Scholar 

  8. Emery CA, Roy T-O, Whittaker JL, Nettel-Aguirre A, Van Mechelen W. Neuromuscular training injury prevention strategies in youth sport: a systematic review and meta-analysis. Br J Sport Med. 2015;49(13):865–70.

    Article  Google Scholar 

  9. Bullock GS, Hughes T, Sergeant JC, Callaghan MJ, Riley RD, Collins GS. Clinical prediction models in sports medicine: a guide for clinicians and researchers. J Orthop Sport Phys Ther. 2021;51(10):517–25.

    Article  Google Scholar 

  10. Bahr R. Why screening tests to predict injury do not work—and probably never will…: a critical review. Br J Sport Med. 2016;50(13):776–80.

    Article  Google Scholar 

  11. Fischer JE, Steiner F, Zucol F, Berger C, Martignon L, Bossart W, et al. Use of simple heuristics to target macrolide prescription in children with community-acquired pneumonia. Arch Peds Adolesc Med. 2002;156(10):1005–8.

    Article  Google Scholar 

  12. Knaus WA, Wagner DP, Draper EA, Zimmerman JE, Bergner M, Bastos PG, et al. The APACHE III prognostic system: risk prediction of hospital mortality for critically III hospitalized adults. Chest. 1991;100(6):1619–36.

    Article  CAS  PubMed  Google Scholar 

  13. Bullock GS, Hughes T, Sergeant JC, Callaghan MJ, Riley R, Collins G. Methods matter: clinical prediction models will benefit sports medicine practice, but only if they are properly developed and validated. Br J Sport Med. 2021;55(23):1319–21.

    Article  Google Scholar 

  14. Tzoulaki I, Liberopoulos G, Ioannidis JP. Assessment of claims of improved prediction beyond the Framingham risk score. JAMA. 2009;302(21):2345–52.

    Article  CAS  PubMed  Google Scholar 

  15. McCloskey EV, Johansson H, Oden A, Kanis JA. From relative risk to absolute fracture risk calculation: the FRAX algorithm. Curr Osteoporosis Rep. 2009;7(3):77–83.

    Article  Google Scholar 

  16. Wong DT, Knaus WA. Predicting outcome in critical care: the current status of the APACHE prognostic scoring system. Can J Anaesth. 1991;38(3):374–83.

    Article  CAS  PubMed  Google Scholar 

  17. Seow D, Graham I, Massey A. Prediction models for musculoskeletal injuries in professional sporting activities: a systematic review. Trans Sport Med. 2020;3(6):505–17.

    Article  Google Scholar 

  18. Claudino JG, de Oliveira CD, de Souza TV, Serrão JC, Pereira ACM, Nassis GP. Current approaches to the use of artificial intelligence for injury risk assessment and performance prediction in team sports: a systematic review. Sports Med-Open. 2019;5(1):1–12.

    Article  Google Scholar 

  19. Moons KG, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio) marker. Heart. 2012;98(9):683–90.

    Article  PubMed  Google Scholar 

  20. Van Calster B, Wynants L, Timmerman D, Steyerberg EW, Collins GS. Predictive analytics in health care: how can we know it works? J Am Med Inform Assoc. 2019;26(12):1651–4.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bzdok D, Altman N, Krzywinski M. Points of significance: statistics versus machine learning. Nature. 2018;14(12):1119.

    Google Scholar 

  22. Collins GS, Ogundimu EO, Altman DG. Sample size considerations for the external validation of a multivariable prognostic model: a resampling study. Stat Med. 2016;35(2):214–26.

    Article  PubMed  Google Scholar 

  23. van der Ploeg T, Austin PC, Steyerberg EW. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med Res Methodol. 2014;14(1):1–13.

    Google Scholar 

  24. Christodoulou E, Ma J, Collins GS, Steyerberg EW, Verbakel JY, Van Calster B. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J Clin Epidemiol. 2019;110:12–22.

    Article  PubMed  Google Scholar 

  25. Dhiman P, Ma J, Navarro CA, Speich B, Bullock G, Damen JA, et al. Reporting of prognostic clinical prediction models based on machine learning methods in oncology needs to be improved. J Clin Epidemiol. 2021;138:60–72.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. J Br Surg. 2015;102(3):148–58.

    Article  CAS  Google Scholar 

  27. Moons KG, Kengne AP, Grobbee DE, Royston P, Vergouwe Y, Altman DG, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart. 2012;98(9):691–8.

    Article  PubMed  Google Scholar 

  28. Janssen K, Moons K, Kalkman C, Grobbee D, Vergouwe Y. Updating methods improved the performance of a clinical prediction model in new patients. J Clin Epidemiol. 2008;61(1):76–86.

    Article  CAS  PubMed  Google Scholar 

  29. Van Eetvelde H, Mendonça LD, Ley C, Seil R, Tischer T. Machine learning methods in sport injury prediction and prevention: a systematic review. J Exp Orthop. 2021;8(1):1–15.

    Google Scholar 

  30. Bullock GS, Hughes T, Sergeant JC, Callaghan MJ, Collins GS, Riley RD. Improving prediction model systematic review methodology: Letter to the Editor. Trans Sport Med. 2021;4(4):545–7.

    Article  Google Scholar 

  31. Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 2014;11(10): e1001744.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wolff RF, Moons KG, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Int Med. 2019;170(1):51–8.

    Article  PubMed  Google Scholar 

  33. Abalo-Núñez R, Gutiérrez-Sánchez A, Pérez MI, Vernetta-Santana M. Injury prediction in aerobic gymnastics based on anthropometric variables. Sci Sports. 2018;33(4):228–36.

    Article  Google Scholar 

  34. Ayala F, López-Valenciano A, Martín JAG, Croix MDS, Vera-Garcia FJ, del Pilar G-V, et al. A preventive model for hamstring injuries in professional soccer: learning algorithms. Int J Sport Med. 2019;40(05):344–53.

    Article  Google Scholar 

  35. Carbuhn AF, Sanchez Z, Fry AC, Reynolds MR, Magee LM. A simplified prediction model for lower extremity long bone stress injuries in male endurance running athletes. Clin J Sport Med. 2020;30(5):e124–6.

    PubMed  Google Scholar 

  36. Colby MJ, Dawson B, Peeling P, Heasman J, Rogalski B, Drew MK, et al. Improvement of prediction of noncontact injury in elite Australian footballers with repeated exposure to established high-risk workload scenarios. Int J Sport Physiol Perform. 2018;13(9):1130–5.

    Article  Google Scholar 

  37. Feijen S, Struyf T, Kuppens K, Tate A, Struyf F. Prediction of shoulder pain in youth competitive swimmers: the development and internal validation of a prognostic prediction model. Am J Sport Med. 2021;49(1):154–61.

    Article  Google Scholar 

  38. Gabbett TJ. The development and application of an injury prediction model for noncontact, soft-tissue injuries in elite collision sport athletes. J Strength Cond Res. 2010;24(10):2593–603.

    Article  PubMed  Google Scholar 

  39. Hughes T, Riley RD, Callaghan MJ, Sergeant JC. The value of preseason screening for injury prediction: the development and internal validation of a multivariable prognostic model to predict indirect muscle injury risk in elite football (soccer) players. Sports Med-Open. 2020;6:1–13.

    Article  Google Scholar 

  40. Ivarsson A, Johnson U, Lindwall M, Gustafsson H, Altemyr M. Psychosocial stress as a predictor of injury in elite junior soccer: a latent growth curve analysis. J Sci Med Sport. 2014;17(4):366–70.

    Article  PubMed  Google Scholar 

  41. Jauhiainen S, Kauppi J-P, Leppänen M, Pasanen K, Parkkari J, Vasankari T, et al. New machine learning approach for detection of injury risk factors in young team sport athletes. Int J Sport Med. 2021;42(02):175–82.

    Article  Google Scholar 

  42. Karuc J, Mišigoj-Durakovic M, Šarlija M, Markovic G, Hadžic V, Trošt-Bobic T, et al. Can injuries be predicted by functional movement screen in adolescents? The application of machine learning. J Strength Cond Res. 2021;35(4):910–9.

    Article  PubMed  Google Scholar 

  43. Khayambashi K, Ghoddosi N, Straub RK, Powers CM. Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sport Med. 2016;44(2):355–61.

    Article  Google Scholar 

  44. Landis SE, Baker RT, Seegmiller JG. Non-contact anterior cruciate ligament and lower extremity injury risk prediction using functional movement screen and knee abduction moment: an epidemiological observation of female intercollegiate athletes. Int J Sport Phys Ther. 2018;13(6):973.

    Article  Google Scholar 

  45. López-Valenciano A, Ayala F, Puerta JM, Croix MDS, Vera-García F, Hernández-Sánchez S, et al. A preventive model for muscle injuries: a novel approach based on learning algorithms. Med Sci Sport Exerc. 2018;50(5):915.

    Article  Google Scholar 

  46. Luu BC, Wright AL, Haeberle HS, Karnuta JM, Schickendantz MS, Makhni EC, et al. Machine learning outperforms logistic regression analysis to predict next-season NHL player injury: an analysis of 2322 players from 2007 to 2017. Orthop J Sport Med. 2020;8(9):2325967120953404.

    Article  Google Scholar 

  47. McCann RS, Kosik KB, Terada M, Beard MQ, Buskirk GE, Gribble PA. Acute lateral ankle sprain prediction in collegiate women’s soccer players. Int J Sport Phys Ther. 2018;13(1):12.

    Article  Google Scholar 

  48. Oliver JL, Ayala F, Croix MBDS, Lloyd RS, Myer GD, Read PJ. Using machine learning to improve our understanding of injury risk and prediction in elite male youth football players. J Sci Med Sport. 2020;23(11):1044–8.

    Article  PubMed  Google Scholar 

  49. Pontillo M, Hines SM, Sennett BJ. Prediction of ACL injuries from vertical jump kinetics in division 1 collegiate athletes. Int J Sport Phys Ther. 2021;16(1):156.

    Article  Google Scholar 

  50. Powers CM, Ghoddosi N, Straub RK, Khayambashi K. Hip strength as a predictor of ankle sprains in male soccer players: a prospective study. J Athl Train. 2017;52(11):1048–55.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rommers N, Rössler R, Verhagen E, Vandecasteele F, Verstockt S, Vaeyens R, et al. A machine learning approach to assess injury risk in elite youth football players. Med Sci Sport Exerc. 2020;52(8):1745–51.

    Article  Google Scholar 

  52. Rossi A, Pappalardo L, Cintia P, Iaia FM, Fernández J, Medina D. Effective injury forecasting in soccer with GPS training data and machine learning. PLoS ONE. 2018;13(7): e0201264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ruddy J, Shield A, Maniar N, Williams M, Duhig S, Timmins R, et al. Predictive modeling of hamstring strain injuries in elite Australian footballers. Med Sci Sport Exerc. 2018;50(5):906–14.

    Article  Google Scholar 

  54. Shambaugh JP, Klein A, Herbert JH. Structural measures as predictors of injury basketball players. Med Sci Sport Exerc. 1991;23(5):522–7.

    Article  CAS  Google Scholar 

  55. Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse MG, Tourville TW, Slauterbeck JR, et al. Combined anatomic factors predicting risk of anterior cruciate ligament injury for males and females. Am J Sport Med. 2015;43(4):839–47.

    Article  Google Scholar 

  56. Teramoto M, Cross CL, Cushman DM, Maak TG, Petron DJ, Willick SE. Game injuries in relation to game schedules in the National Basketball Association. J Sci Med Sport. 2017;20(3):230–5.

    Article  PubMed  Google Scholar 

  57. Thornton HR, Delaney JA, Duthie GM, Dascombe BJ. Importance of various training-load measures in injury incidence of professional rugby league athletes. Int J Sport Physiol Perform. 2017;12(6):819–24.

    Article  Google Scholar 

  58. Van Der Does H, Brink M, Benjaminse A, Visscher C, Lemmink K. Jump landing characteristics predict lower extremity injuries in indoor team sports. Int J Sport Med. 2016;37(03):251–6.

    Google Scholar 

  59. Whiteside D, Martini DN, Lepley AS, Zernicke RF, Goulet GC. Predictors of ulnar collateral ligament reconstruction in Major League Baseball pitchers. Am J Sport Med. 2016;44(9):2202–9.

    Article  Google Scholar 

  60. Wiese BW, Boone JK, Mattacola CG, McKeon PO, Uhl TL. Determination of the functional movement screen to predict musculoskeletal injury in intercollegiate athletics. Athl Train Sport Health Care. 2014;6(4):161–9.

    Article  Google Scholar 

  61. Wilkerson GB, Colston MA. A refined prediction model for core and lower extremity sprains and strains among collegiate football players. J Athl Train. 2015;50(6):643–50.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Carey DL, Ong K, Whiteley R, Crossley KM, Crow J, Morris ME. Predictive modelling of training loads and injury in Australian football. Int J Comp Sci Sport Sport. 2018;17(1):49–66.

    Google Scholar 

  63. Riley RD, Ensor J, Snell KI, Harrell FE, Martin GP, Reitsma JB, et al. Calculating the sample size required for developing a clinical prediction model. BMJ. 2020;368:m441.

    Article  PubMed  Google Scholar 

  64. Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ. 2020;369:m1328.

    Article  PubMed  PubMed Central  Google Scholar 

  65. van Smeden M, de Groot JA, Moons KG, Collins GS, Altman DG, Eijkemans MJ, et al. No rationale for 1 variable per 10 events criterion for binary logistic regression analysis. BMC Med Res Methodol. 2016;16(1):163.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Riley RD, Snell KI, Ensor J, Burke DL, Harrell FE Jr, Moons KG, et al. Minimum sample size for developing a multivariable prediction model: Part I-Continuous outcomes. Stat Med. 2019;38(7):1262–75.

    Article  PubMed  Google Scholar 

  67. Steyerberg EW. Clinical prediction models. Berlin: Springer; 2019.

    Book  Google Scholar 

  68. Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med. 2006;25(1):127–41.

    Article  PubMed  Google Scholar 

  69. Gauthier J, Wu Q, Gooley T. Cubic splines to model relationships between continuous variables and outcomes: a guide for clinicians. Berlin: Nature Publishing Group; 2020.

    Google Scholar 

  70. Carey DL, Crossley KM, Whiteley R, Mosler A, Ong K-L, Crow J, et al. Modeling training loads and injuries: the dangers of discretization. Med Sci Sport Exerc. 2018;50(11):2267–76.

    Article  Google Scholar 

  71. Collins GS, Ma J, Gerry S, Ohuma E, Lang’O O, Trivella M, et al. Risk prediction models in perioperative medicine: methodological considerations. Curr Anesthesiol Rep. 2016;6(3):267–75.

    Article  Google Scholar 

  72. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodological). 1996;58(1):267–88.

    Google Scholar 

  73. Riley RD, Snell KI, Martin GP, Whittle R, Archer L, Sperrin M, et al. Penalization and shrinkage methods produced unreliable clinical prediction models especially when sample size was small. J Clin Epidemiol. 2021;132:88–96.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Altman DG, Royston P. What do we mean by validating a prognostic model? Stat Med. 2000;19(4):453–73.

    Article  CAS  PubMed  Google Scholar 

  75. Steyerberg EW, Harrell FE Jr, Borsboom GJ, Eijkemans M, Vergouwe Y, Habbema JDF. Internal validation of predictive models: efficiency of some procedures for logistic regression analysis. J Clin Epidemiol. 2001;54(8):774–81.

    Article  CAS  PubMed  Google Scholar 

  76. Debray TP, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KG. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol. 2015;68(3):279–89.

    Article  PubMed  Google Scholar 

  77. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction models: a framework for some traditional and novel measures. Epidemiol. 2010;21(1):128.

    Article  Google Scholar 

  78. Van Calster B, McLernon DJ, Van Smeden M, Wynants L, Steyerberg EW. Calibration: the Achilles heel of predictive analytics. BMC Med. 2019;17(1):1–7.

    Google Scholar 

  79. Collins GS, de Groot JA, Dutton S, Omar O, Shanyinde M, Tajar A, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol. 2014;14(1):40.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Collins GS, Mallett S, Omar O, Yu L-M. Developing risk prediction models for type 2 diabetes: a systematic review of methodology and reporting. BMC Med. 2011;9(1):1–14.

    Article  Google Scholar 

  81. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321–57.

    Article  Google Scholar 

  82. Norgeot B, Quer G, Beaulieu-Jones BK, Torkamani A, Dias R, Gianfrancesco M, et al. Minimum information about clinical artificial intelligence modeling: the MI-CLAIM checklist. Nat Med. 2020;26(9):1320–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Collins GS, Dhiman P, Navarro CLA, Ma J, Hooft L, Reitsma JB, et al. Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence. BMJ Open. 2021;11(7): e048008.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett S. Bullock.

Ethics declarations

Funding

GSC was supported by the NIHR Biomedical Research Centre, Oxford, and Cancer Research UK (programme Grant: C49297/A27294).

Conflict of interest

Garrett Bullock, Joseph Mylott, Tom Hughes, Kristen Nicholson, Richard Riley and Gary Collins declare that they have no conflicts of interest relevant to the content of this review.

Availability of data and material

Extracted data are available through the Open Science Framework at https://osf.io/52mzn/.

Code availability

Not applicable.

Author contributions

GSB, TH and GSC conceived the study idea. GSB, TH and GSC were involved in design and planning. GSB and GSC wrote the first draft of the manuscript. GSB, JM, TH, KFN, RDR and GSC critically revised the manuscript. GSB, JM, TH, KFN, RDR and GSC approved the final version of the manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Patient public involvement

A series of symposiums are planned at various sports medicine conferences to help further educate clinicians on this topic.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 98 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bullock, G.S., Mylott, J., Hughes, T. et al. Just How Confident Can We Be in Predicting Sports Injuries? A Systematic Review of the Methodological Conduct and Performance of Existing Musculoskeletal Injury Prediction Models in Sport. Sports Med 52, 2469–2482 (2022). https://doi.org/10.1007/s40279-022-01698-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01698-9

Navigation