Skip to main content
Log in

Muscle Injuries in Sports: A New Evidence-Informed and Expert Consensus-Based Classification with Clinical Application

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Muscle injuries are among the most common injuries in sport and continue to be a major concern because of training and competition time loss, challenging decision making regarding treatment and return to sport, and a relatively high recurrence rate. An adequate classification of muscle injury is essential for a full understanding of the injury and to optimize its management and return-to-play process. The ongoing failure to establish a classification system with broad acceptance has resulted from factors such as limited clinical applicability, and the inclusion of subjective findings and ambiguous terminology. The purpose of this article was to describe a classification system for muscle injuries with easy clinical application, adequate grouping of injuries with similar functional impairment, and potential prognostic value. This evidence-informed and expert consensus-based classification system for muscle injuries is based on a four-letter initialism system: MLG-R, respectively referring to the mechanism of injury (M), location of injury (L), grading of severity (G), and number of muscle re-injuries (R). The goal of the classification is to enhance communication between healthcare and sports-related professionals and facilitate rehabilitation and return-to-play decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ekstrand J, Hägglund M, Waldén M. Epidemiology of muscle injuries in professional football (soccer). Am J Sports Med. 2011;39(6):1226–32.

    Article  PubMed  Google Scholar 

  2. Williams S, Trewartha G, Kemp S, et al. A meta-analysis of injuries in senior men’s professional Rugby Union. Sports Med. 2013;43(10):1043–55.

    Article  PubMed  Google Scholar 

  3. Brophy RH, Wright RW, Powell JW, et al. Injuries to kickers in American football: the National Football League experience. Am J Sports Med. 2010;38(6):1166–73.

    Article  PubMed  Google Scholar 

  4. Feeley BT, Kennelly S, Barnes RP, et al. Epidemiology of National Football League training camp injuries from 1998 to 2007. Am J Sports Med. 2008;36(8):1597–603.

    Article  PubMed  Google Scholar 

  5. Olson D, Sikka RS, Labounty A, et al. Injuries in professional football: current concepts. Curr Sports Med Rep. 2013;12(6):381–90.

  6. Hrysomallis C. Injury incidence, risk factors and prevention in Australian rules football. Sports Med. 2013;43(5):339–54.

    Article  PubMed  Google Scholar 

  7. Orchard J, Seward H. Epidemiology of injuries in the Australian Football League, seasons 1997–2000. Br J Sports Med. 2002;36(1):39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alonso JM, Junge A, Renstrom P, et al. Sports injuries surveillance during the 2007 IAAF World Athletics Championships. Clin J Sport Med. 2009;19(1):26–32.

    Article  PubMed  Google Scholar 

  9. Feddermann-Demont N, Junge A, Edouard P, et al. Injuries in 13 international athletics championships between 2007–2012. Br J Sports Med. 2014;48(7):513–22.

    Article  PubMed  Google Scholar 

  10. Garrett WE Jr. Muscle strain injuries. Am J Sports Med. 1996;24(6 Suppl.):S2–8.

    PubMed  Google Scholar 

  11. Jarvinen TA, Jarvinen TL, Kaariainen M, et al. Muscle injuries: biology and treatment. Am J Sports Med. 2005;33(5):745–64.

    Article  PubMed  Google Scholar 

  12. Volpi P, Melegati G, Tornese D, et al. Muscle strains in soccer: a five-year survey of an Italian major league team. Knee Surg Sports Traumatol Arthrosc. 2004;12(5):482–5.

    Article  PubMed  Google Scholar 

  13. Ekstrand J, Healy JC, Walden M, et al. Hamstring muscle injuries in professional football: the correlation of MRI findings with return to play. Br J Sports Med. 2012;46(2):112–7.

    Article  PubMed  Google Scholar 

  14. Orchard J, Best TM, Verrall GM. Return to play following muscle strains. Clin J Sport Med. 2005;15(6):436–41.

    Article  PubMed  Google Scholar 

  15. Carling C, Le Gall F, Orhant E. A four-season prospective study of muscle strain reoccurrences in a professional football club. Res Sports Med. 2011;19(2):92–102.

    Article  PubMed  Google Scholar 

  16. Gibbs NJ, Cross TM, Cameron M, et al. The accuracy of MRI in predicting recovery and recurrence of acute grade one hamstring muscle strains within the same season in Australian Rules football players. J Sci Med Sport. 2004;7(2):248–58.

    Article  CAS  PubMed  Google Scholar 

  17. Koulouris G, Connell DA, Brukner P, et al. Magnetic resonance imaging parameters for assessing risk of recurrent hamstring injuries in elite athletes. Am J Sports Med. 2007;35(9):1500–6.

    Article  PubMed  Google Scholar 

  18. Malliaropoulos N, Isinkaye T, Tsitas K, et al. Reinjury after acute posterior thigh muscle injuries in elite track and field athletes. Am J Sports Med. 2011;39(2):304–10.

    Article  PubMed  Google Scholar 

  19. Verrall GM, Slavotinek JP, Barnes PC, et al. Assessment of physical examination and magnetic resonance imaging findings of hamstring injury as predictors for recurrent injury. J Orthop Sport Phys. 2006;36(4):215–24.

    Article  Google Scholar 

  20. Eirale C, Tol JL, Farooq A, et al. Low injury rate strongly correlates with team success in Qatari professional football. Br J Sports Med. 2013;47(12):807–8.

    Article  PubMed  Google Scholar 

  21. Hagglund M, Walden M, Magnusson H, et al. Injuries affect team performance negatively in professional football: an 11-year follow-up of the UEFA Champions League injury study. Br J Sports Med. 2013;47(12):738–42.

    Article  PubMed  Google Scholar 

  22. Guerrero M, Guiu-Comadevall M, Cadefau JA, et al. Fast and slow myosins as markers of muscle injury. Br J Sports Med. 2008;42(7):581–4.

    Article  CAS  PubMed  Google Scholar 

  23. O’Donoghue DH. Treatment of injuries to athletes. Philadelphia:W.B. Saunders; 1962.

  24. Ryan AJ. Quadriceps strain, rupture, and Charlie horse. Med Sci Sports. 1969;1(2):106–11.

    Google Scholar 

  25. Takebayashi S, Takasawa H, Banzai Y, et al. Sonographic findings in muscle strain injury: clinical and MR imaging correlation. J Ultrasound Med. 1995;14(12):899–905.

    Article  CAS  PubMed  Google Scholar 

  26. Moller M, Kalebo P, Tidebrant G, et al. The ultrasonographic appearance of the ruptured Achilles tendon during healing: a longitudinal evaluation of surgical and nonsurgical treatment, with comparisons to MRI appearance. Knee Surg Sports Traumatol Arthrosc. 2002;10(1):49–56.

    Article  PubMed  Google Scholar 

  27. Stoller DW. Magnetic resonance imaging in orthopaedics and sports medicine. Baltimore: Lippincott Williams & Wilkins; 2007.

  28. Smart M. The principles of treatment of muscles and joints by graduated muscular contractions. Oxford: Oxford University Press, Humphrey Milford [printed by John Johnson]; 1933.

  29. Zarins B, Ciullo JV. Acute muscle and tendon injuries in athletes. Clin Sports Med. 1983;2(1):167–82.

    CAS  PubMed  Google Scholar 

  30. Chan O, Del Buono A, Best TM, et al. Acute muscle strain injuries: a proposed new classification system. Knee Surg Sports Traumatol Arthrosc. 2012;20(11):2356–62.

    Article  PubMed  Google Scholar 

  31. Mueller-Wohlfahrt HW, Haensel L, Mithoefer K, et al. Terminology and classification of muscle injuries in sport: the Munich consensus statement. Br J Sports Med. 2013;47(6):342–50.

    Article  PubMed  Google Scholar 

  32. Pollock N, James SL, Lee JC, et al. British athletics muscle injury classification: a new grading system. Br J Sports Med. 2014;48(18):1347–51.

    Article  PubMed  Google Scholar 

  33. Pedret C, Balius R. Lesiones musculares en el deporte. Actualización de un artículo del Dr. Cabot, publicado en Apuntes de Medicina Deportiva en 1965. Apunts Medicina de l” Esport (Castellano). 2015;50(187):111–20.

  34. ElMaraghy AW, Devereaux MW. A systematic review and comprehensive classification of pectoralis major tears. J Shoulder Elbow Surg. 2012;21(3):412–22.

    Article  PubMed  Google Scholar 

  35. Connell DA, Potter HG, Sherman MF, et al. Injuries of the pectoralis major muscle: evaluation with MR imaging. Radiology. 1999;210(3):785–91.

    Article  CAS  PubMed  Google Scholar 

  36. Jackson DW, Feagin JA. Quadriceps contusions in young athletes: relation of severity of injury to treatment and prognosis. J Bone Joint Surg Am. 1973;55(1):95–105.

    Article  CAS  PubMed  Google Scholar 

  37. Malliaropoulos N, Papacostas E, Kiritsi O, et al. Posterior thigh muscle injuries in elite track and field athletes. Am J Sports Med. 2010;38(9):1813–9.

    Article  PubMed  Google Scholar 

  38. Cohen SB, Towers JD, Zoga A, et al. Hamstring injuries in professional football players: magnetic resonance imaging correlation with return to play. Sports Health. 2011;3(5):423–30.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hamilton B, Valle X, Rodas G, et al. Classification and grading of muscle injuries: a narrative review. Br J Sports Med. 2015;49(5):306.

    Article  PubMed  Google Scholar 

  40. Ekstrand J, Askling C, Magnusson H, et al. Return to play after thigh muscle injury in elite football players: implementation and validation of the Munich muscle injury classification. Br J Sports Med. 2013;47(12):769–74.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Patel A, Chakraverty J, Pollock N, et al. British athletics muscle injury classification: a reliability study for a new grading system. Clin Radiol. 2015;70(12):1414–20.

    Article  CAS  PubMed  Google Scholar 

  42. Tol JL, Hamilton B, Best TM. Palpating muscles, massaging the evidence? An editorial relating to ‘Terminology and classification of muscle injuries in sport: The Munich consensus statement’. Br J Sports Med. 2013;47(6):340–1.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Warren P, Gabbe BJ, Schneider-Kolsky M, et al. Clinical predictors of time to return to competition and of recurrence following hamstring strain in elite Australian footballers. Br J Sports Med. 2010;44(6):415–9.

    Article  PubMed  Google Scholar 

  44. Lempainen L, Banke IJ, Johansson K, et al. Clinical principles in the management of hamstring injuries. Knee Surg Sports Traumatol Arthrosc. 2015;23(8):2449–56.

    Article  PubMed  Google Scholar 

  45. Fink A, Kosecoff J, Chassin M, et al. Consensus methods: characteristics and guidelines for use. Am J Public Health. 1984;74(9):979–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jones J, Hunter D. Consensus methods for medical and health services research. BMJ. 1995;311(7001):376–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fuller CW, Ekstrand J, Junge A, et al. Consensus statement on injury definitions and data collection procedures in studies of football (soccer) injuries. Scand J Med Sci Sports. 2006;16(2):83–92.

    Article  CAS  PubMed  Google Scholar 

  48. Huard J, Li Y, Fu FH. Muscle injuries and repair: current trends in research. J Bone Joint Surg Am. 2002;84-A(5):822–32.

  49. Jarvinen TA, Jarvinen TL, Kaariainen M, et al. Muscle injuries: optimising recovery. Best Pract Res Clin Rheumatol. 2007;21(2):317–31.

    Article  PubMed  Google Scholar 

  50. Best TM, Hunter KD. Muscle injury and repair. Phys Med Rehabil Clin N Am. 2000;11(2):251–66.

    CAS  PubMed  Google Scholar 

  51. Askling CM, Tengvar M, Saartok T, et al. Acute first-time hamstring strains during slow-speed stretching: clinical, magnetic resonance imaging, and recovery characteristics. Am J Sports Med. 2007;35(10):1716–24.

    Article  PubMed  Google Scholar 

  52. Askling CM, Malliaropoulos N, Karlsson J. High-speed running type or stretching-type of hamstring injuries makes a difference to treatment and prognosis. Br J Sports Med. 2012;46(2):86–7.

    Article  PubMed  Google Scholar 

  53. Garrett WE, Jr., Nikolaou PK, Ribbeck BM, et al. The effect of muscle architecture on the biomechanical failure properties of skeletal muscle under passive extension. Am J Sports Med. 1988;16(1):7–12.

  54. Garrett WE, Jr., Safran MR, Seaber AV, et al. Biomechanical comparison of stimulated and nonstimulated skeletal muscle pulled to failure. Am J Sports Med. 1987;15(5):448–54.

  55. Koulouris G, Connell D. Evaluation of the hamstring muscle complex following acute injury. Skeletal Radiol. 2003;32(10):582–9.

    Article  PubMed  Google Scholar 

  56. De Smet AA, Best TM. MR imaging of the distribution and location of acute hamstring injuries in athletes. AJR Am J Roentgenol. 2000;174(2):393–9.

    Article  PubMed  Google Scholar 

  57. Koh ES, McNally EG. Ultrasound of skeletal muscle injury. Semin Musculoskelet Radiol. 2007;11(2):162–73.

    Article  PubMed  Google Scholar 

  58. Taylor DC, Dalton JD, Jr., Seaber AV, et al. Experimental muscle strain injury: early functional and structural deficits and the increased risk for reinjury. Am J Sports Med. 1993;21(2):190–4.

  59. Garrett WE Jr, Rich FR, Nikolaou PK, et al. Computed tomography of hamstring muscle strains. Med Sci Sports Exerc. 1989;21(5):506–14.

    Article  PubMed  Google Scholar 

  60. Hughes Ct, Hasselman CT, Best TM, et al. Incomplete, intrasubstance strain injuries of the rectus femoris muscle. Am J Sports Med. 1995;23(4):500–6.

  61. Armfield DR, Kim DH, Towers JD, et al. Sports-related muscle injury in the lower extremity. Clin Sports Med. 2006;25(4):803–42.

    Article  PubMed  Google Scholar 

  62. Slavotinek JP, Verrall GM, Fon GT. Hamstring injury in athletes: using MR imaging measurements to compare extent of muscle injury with amount of time lost from competition. AJR Am J Roentgenol. 2002;179(6):1621–8.

    Article  PubMed  Google Scholar 

  63. Cross TM, Gibbs N, Houang MT, et al. Acute quadriceps muscle strains: magnetic resonance imaging features and prognosis. Am J Sports Med. 2004;32(3):710–9.

  64. Connell DA, Schneider-Kolsky ME, Hoving JL, et al. Longitudinal study comparing sonographic and MRI assessments of acute and healing hamstring injuries. AJR Am J Roentgenol. 2004;183(4):975–84.

    Article  PubMed  Google Scholar 

  65. Boutin RD, Fritz RC, Steinbach LS. Imaging of sports-related muscle injuries. Radiol Clin North Am. 2002;40(2):333–62, vii.

  66. Beiner JM, Jokl P. Muscle contusion injury and myositis ossificans traumatica. Clin Orthop Relat Res. 2002;403(403 Suppl.):S110–9.

    Article  Google Scholar 

  67. Kary JM. Diagnosis and management of quadriceps strains and contusions. Curr Rev Musculoskelet Med. 2010;3(1–4):26–31.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lee JC, Mitchell AW, Healy JC. Imaging of muscle injury in the elite athlete. Br J Radiol. 2012;85(1016):1173–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Thorsson O, Lilja B, Nilsson P, et al. Immediate external compression in the management of an acute muscle injury. Scand J Med Sci Sports. 1997;7(3):182–90.

    Article  CAS  PubMed  Google Scholar 

  70. Passerieux E, Rossignol R, Letellier T, et al. Physical continuity of the perimysium from myofibers to tendons: involvement in lateral force transmission in skeletal muscle. J Struct Biol. 2007;159(1):19–28.

    Article  CAS  PubMed  Google Scholar 

  71. Huijing PA. Epimuscular myofascial force transmission: a historical review and implications for new research. International Society of Biomechanics Muybridge Award Lecture, Taipei, 2007. J Biomech. 2009;42(1):9–21.

    Article  PubMed  Google Scholar 

  72. Stecco C, Gagey O, Macchi V, et al. Tendinous muscular insertions onto the deep fascia of the upper limb. First part: anatomical study. Morphologie. 2007;91(292):29–37.

    Article  CAS  PubMed  Google Scholar 

  73. Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44(3):318–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kjaer M, Magnusson P, Krogsgaard M, et al. Extracellular matrix adaptation of tendon and skeletal muscle to exercise. J Anat. 2006;208(4):445–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Balius R, Maestro A, Pedret C, et al. Central aponeurosis tears of the rectus femoris: practical sonographic prognosis. Br J Sports Med. 2009;43(11):818–24.

    Article  CAS  PubMed  Google Scholar 

  76. Brukner P, Connell D. ‘Serious thigh muscle strains’: beware the intramuscular tendon which plays an important role in difficult hamstring and quadriceps muscle strains. Br J Sports Med. 2016;50(4):205–8.

    Article  PubMed  Google Scholar 

  77. Comin J, Malliaras P, Baquie P, et al. Return to competitive play after hamstring injuries involving disruption of the central tendon. Am J Sports Med. 2013;41(1):111–5.

    Article  PubMed  Google Scholar 

  78. Thorsson O, Lilja B, Nilsson P, et al. Immediate external compression in the management of an acute muscle injury. Scand J Med Sci Sports. 1997;7(3):182–90.

    Article  CAS  PubMed  Google Scholar 

  79. Slavotinek JP. Muscle injury: the role of imaging in prognostic assignment and monitoring of muscle repair. Semin Musculoskelet Radiol. 2010;14(2):194–200.

    Article  PubMed  Google Scholar 

  80. Schneider-Kolsky ME, Hoving JL, Warren P, et al. A comparison between clinical assessment and magnetic resonance imaging of acute hamstring injuries. Am J Sports Med. 2006;34(6):1008–15.

    Article  PubMed  Google Scholar 

  81. Crisco JJ, Jokl P, Heinen GT, et al. A muscle contusion injury model: biomechanics, physiology, and histology. Am J Sports Med. 1994;22(5):702–10.

  82. Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011;44(3):318–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Askling CM, Tengvar M, Saartok T, et al. Proximal hamstring strains of stretching type in different sports: injury situations, clinical and magnetic resonance imaging characteristics, and return to sport. Am J Sports Med. 2008;36(9):1799–804.

    Article  PubMed  Google Scholar 

  84. Pollock N, Patel A, Chakraverty J, et al. Time to return to full training is delayed and recurrence rate is higher in intratendinous (‘c’) acute hamstring injury in elite track and field athletes: clinical application of the British Athletics Muscle Injury Classification. Br J Sports Med. 2016;50(5):305–10.

    Article  PubMed  Google Scholar 

  85. Reurink G, Goudswaard GJ, Oomen HG, et al. Reliability of the active and passive knee extension test in acute hamstring injuries. Am J Sports Med. 2013;41(8):1757–61.

    Article  PubMed  Google Scholar 

  86. Seward H, Orchard J, Hazard H, et al. Football injuries in Australia at the elite level. Med J Aust. 1993;159(5):298–301.

    CAS  PubMed  Google Scholar 

  87. Pomeranz SJ, Heidt RS Jr. MR imaging in the prognostication of hamstring injury: work in progress. Radiology. 1993;189(3):897–900.

    Article  CAS  PubMed  Google Scholar 

  88. Askling C, Saartok T, Thorstensson A. Type of acute hamstring strain affects flexibility, strength, and time to return to pre-injury level. Br J Sports Med. 2006;40(1):40–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Koulouris G, Connell D. Imaging of hamstring injuries: therapeutic implications. Eur Radiol. 2006;16(7):1478–87.

    Article  PubMed  Google Scholar 

  90. Bianchi S, Martinoli C, Waser NP, et al. Central aponeurosis tears of the rectus femoris: sonographic findings. Skelet Radiol. 2002;31(10):581–6.

    Article  Google Scholar 

  91. Petersen J, Thorborg K, Nielsen MB, et al. The diagnostic and prognostic value of ultrasonography in soccer players with acute hamstring injuries. Am J Sports Med. 2014;42(2):399–404.

    Article  PubMed  Google Scholar 

  92. Sanfilippo JL, Silder A, Sherry MA, et al. Hamstring strength and morphology progression after return to sport from injury. Med Sci Sports Exerc. 2013;45(3):448–54.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Askling CM, Tengvar M, Thorstensson A. Acute hamstring injuries in Swedish elite football: a prospective randomised controlled clinical trial comparing two rehabilitation protocols. Br J Sports Med. 2013;47(15):953–9.

    Article  PubMed  Google Scholar 

  94. Pedret C, Rodas G, Balius R, et al. Return to play after soleus muscle injuries. Orthop J Sports Med. 2015;3(7):2325967115595802.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Wangensteen A, Almusa E, Boukarroum S, et al. MRI does not add value over and above patient history and clinical examination in predicting time to return to sport after acute hamstring injuries: a prospective cohort of 180 male athletes. Br J Sports Med. 2015;49(24):1579–87.

    Article  PubMed  Google Scholar 

  96. Hamilton B, Whiteley R, Almusa E, et al. Excellent reliability for MRI grading and prognostic parameters in acute hamstring injuries. Br J Sports Med. 2014;48(18):1385–7.

    Article  CAS  PubMed  Google Scholar 

  97. Verrall GM, Slavotinek JP, Barnes PG, et al. Clinical risk factors for hamstring muscle strain injury: a prospective study with correlation of injury by magnetic resonance imaging. Br J Sports Med. 2001;35(6):435–9 (discussion 40).

  98. Comin J, Malliaras P, Baquie P, et al. Return to competitive play after hamstring injuries involving disruption of the central tendon. Am J Sports Med. 2013;41(1):111–5.

    Article  PubMed  Google Scholar 

  99. Balius R, Maestro A, Pedret C, et al. Central aponeurosis tears of the rectus femoris: practical sonographic prognosis. Br J Sports Med. 2009;43(11):818–24.

    Article  CAS  PubMed  Google Scholar 

  100. Askling CM, Tengvar M, Saartok T, et al. Acute first-time hamstring strains during high-speed running: a longitudinal study including clinical and magnetic resonance imaging findings. Am J Sports Med. 2007;35(2):197–206.

    Article  PubMed  Google Scholar 

  101. Woodhouse JB, McNally EG. Ultrasound of skeletal muscle injury: an update. Semin Ultrasound CT MR. 2011;32(2):91–100.

    Article  PubMed  Google Scholar 

  102. Balius R, Alomar X, Rodas G, et al. The soleus muscle: MRI, anatomic and histologic findings in cadavers with clinical correlation of strain injury distribution. Skelet Radiol. 2013;42(4):521–30.

    Article  Google Scholar 

  103. Koulouris G, Ting AY, Jhamb A, et al. Magnetic resonance imaging findings of injuries to the calf muscle complex. Skelet Radiol. 2007;36(10):921–7.

    Article  Google Scholar 

  104. Kassarjian A, Rodrigo RM, Santisteban JM. Current concepts in MRI of rectus femoris musculotendinous (myotendinous) and myofascial injuries in elite athletes. Eur J Radiol. 2012;81(12):3763–71.

    Article  CAS  PubMed  Google Scholar 

  105. Pedowitz R, Chung CB, Resnick D. Magnetic resonance imaging in orthopedic sports medicine. New York: Springer; 2008.

  106. Pasta G, Nanni G, Molini L, et al. Sonography of the quadriceps muscle: Examination technique, normal anatomy, and traumatic lesions. J Ultrasound. 2010;13(2):76–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Douis H, Gillett M, James SL. Imaging in the diagnosis, prognostication, and management of lower limb muscle injury. Semin Musculoskelet Radiol. 2011;15(1):27–41.

    Article  PubMed  Google Scholar 

  108. Bianchi S, Martinoli C. Ultrasound of the musculoskeletal system. Berlin: Springer; 2007.

  109. Kumka M, Bonar J. Fascia: a morphological description and classification system based on a literature review. J Can Chiropr Assoc. 2012;56(3):179–91.

    PubMed  PubMed Central  Google Scholar 

  110. Wendell-Smith C. Fascia: an illustrative problem in international terminology. Surg Radiol Anat. 1998;19(5):273–7.

    Article  Google Scholar 

  111. Opar DA, Williams MD, Shield AJ. Hamstring strain injuries: factors that lead to injury and re-injury. Sports Med. 2012;42(3):209–26.

    Article  PubMed  Google Scholar 

  112. Malm C, Yu JG. Exercise-induced muscle damage and inflammation: re-evaluation by proteomics. Histochem Cell Biol. 2012;138(1):89–99.

    Article  CAS  PubMed  Google Scholar 

  113. Carlsson L, Yu JG, Moza M, et al. Myotilin: a prominent marker of myofibrillar remodelling. Neuromuscular Disord. 2007;17(1):61–8.

    Article  Google Scholar 

  114. Yu JG, Furst DO, Thornell LE. The mode of myofibril remodelling in human skeletal muscle affected by DOMS induced by eccentric contractions. Histochem Cell Biol. 2003;119(5):383–93.

    CAS  PubMed  Google Scholar 

  115. McHugh MP. Recent advances in the understanding of the repeated bout effect: the protective effect against muscle damage from a single bout of eccentric exercise. Scand J Med Sci Sports. 2003;13(2):88–97.

    Article  PubMed  Google Scholar 

  116. Paulsen G, Mikkelsen UR, Raastad T, et al. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev. 2012;18:42–97.

    PubMed  Google Scholar 

  117. McKune AJ, Semple SJ, Peters-Futre EM. Acute exercise-induced muscle injury. Biol Sport. 2012;29(1):3–10.

    Article  Google Scholar 

  118. Hughes JD. Metabolic alterations in skeletal muscle following eccentric exercise induced damage. A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy, Massey University, Palmerston North, New Zealand; 2011.

  119. Kerkhoffs GM, van Es N, Wieldraaijer T, et al. Diagnosis and prognosis of acute hamstring injuries in athletes. Knee Surg Sports Traumatol Arthrosc. 2013;21(2):500–9.

    Article  PubMed  Google Scholar 

  120. Malliaropoulos N, Papalexandris S, Papalada A, et al. The role of stretching in rehabilitation of hamstring injuries: 80 athletes follow-up. Med Sci Sports Exerc. 2004;36(5):756–9.

    Article  PubMed  Google Scholar 

  121. O’Sullivan K, McAuliffe S, Deburca N. The effects of eccentric training on lower limb flexibility: a systematic review. Br J Sports Med. 2012;46(12):838–45.

    Article  PubMed  Google Scholar 

  122. Hibbert O, Cheong K, Grant A, et al. A systematic review of the effectiveness of eccentric strength training in the prevention of hamstring muscle strains in otherwise healthy individuals. N Am J Sports Phys Ther. 2008;3(2):67–81.

    PubMed  PubMed Central  Google Scholar 

  123. Kraemer R, Knobloch K. A soccer-specific balance training program for hamstring muscle and patellar and achilles tendon injuries: an intervention study in premier league female soccer. Am J Sports Med. 2009;37(7):1384–93.

    Article  PubMed  Google Scholar 

  124. Malliaropoulos N, Mendiguchia J, Pehlivanidis H, et al. Hamstring exercises for track and field athletes: injury and exercise biomechanics, and possible implications for exercise selection and primary prevention. Br J Sports Med. 2012;46(12):846–51.

    Article  PubMed  Google Scholar 

  125. Kubota J, Ono T, Araki M, et al. Non-uniform changes in magnetic resonance measurements of the semitendinosus muscle following intensive eccentric exercise. Eur J Appl Physiol. 2007;101(6):713–20.

    Article  PubMed  Google Scholar 

  126. Mendiguchia J, Arcos AL, Garrues MA, et al. The use of MRI to evaluate posterior thigh muscle activity and damage during nordic hamstring exercise. J Strength Cond Res. 2013;27(12):3426–35.

    Article  PubMed  Google Scholar 

  127. Mendiguchia J, Garrues MA, Cronin JB, et al. Nonuniform changes in MRI measurements of the thigh muscles after two hamstring strengthening exercises. J Strength Cond Res. 2013;27(3):574–81.

    Article  PubMed  Google Scholar 

  128. Sherry MA, Best TM, Silder A, et al. Hamstring strains: basic science and clinical research applications for preventing the recurrent injury. Strength Cond J. 2011;33(3):56–71.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department de Cirurgia de la Facultat de Medicina of the Universitat Autònoma de Barcelona (UAB). At the time of writing, Xavier Valle was a PhD student at the UAB and this work was part of his doctoral dissertation performed at this department under the oversight and direction of Dr. Gil Rodas, Dr. Joan Carles Monllau, and Dr. Enric Cáceres. The authors also thank the members of FC Barcelona for their participation in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Valle.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Xavier Valle, Eduard Alentorn-Geli, Johannes L. Tol, Bruce Hamilton, William E. Garrett Jr., Ricard Pruna, Lluís Til, Josep Antoni Gutierrez, Xavier Alomar, Ramón Balius, Nikos Malliaropoulos, Joan Carles Monllau, Rodney Whiteley, Erik Witvrouw, Kristian Samuelsson, and Gil Rodas declare that they have no conflicts of interest directly related to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valle, X., Alentorn-Geli, E., Tol, J.L. et al. Muscle Injuries in Sports: A New Evidence-Informed and Expert Consensus-Based Classification with Clinical Application. Sports Med 47, 1241–1253 (2017). https://doi.org/10.1007/s40279-016-0647-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0647-1

Keywords

Navigation