Skip to main content
Log in

New Insights into Enhancing Maximal Exercise Performance Through the Use of a Bitter Tastant

  • Leading Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

It is generally acknowledged that for an orally administered ergogenic aid to enhance exercise performance it must first be absorbed by the gastrointestinal tract before exerting its effects. Recently, however, it has been reported that some ergogenic aids can affect exercise performance without prior absorption by the gastrointestinal tract. This is best illustrated by studies that have shown that rinsing the mouth with a carbohydrate (CHO) solution, without swallowing it, significantly improves exercise performance. The ergogenic effects of CHO mouth rinsing in these studies have been attributed to the activation of the brain by afferent taste signals, but the specific mechanisms by which this brain activation translates to enhanced exercise performance have not yet been elucidated. Given the benefits of CHO mouth rinsing for exercise performance, this raises the issue of whether other types of tastants, such as bitter-tasting solutions, may also improve exercise performance. Recently, we performed a series of studies investigating whether the bitter tastant quinine can improve maximal sprint performance in competitive male cyclists, and, if so, to examine some of the possible mechanisms whereby this effect may occur. These studies have shown that mouth rinsing and ingesting a bitter-tasting quinine solution can significantly improve the performance of a maximal cycling sprint. There is also evidence that the ergogenic effect of quinine is mediated, at least in part, by an increase in autonomic nervous system activation and/or corticomotor excitability. The purpose of this article is to discuss the results and implications of these recent studies and to suggest avenues for further research, which may add to the understanding of the way the brain integrates signals from the oral cavity with motor behaviour, as well as uncover novel strategies to improve exercise performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coggan AR, Coyle EF. Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance. Exerc Sport Sci Rev. 1991;19:1–40.

    Article  CAS  PubMed  Google Scholar 

  2. Arkinstall MJ, Bruce CR, Nikolopoulos V, et al. Effect of carbohydrate ingestion on metabolism during running and cycling. J Appl Physiol. 2001;91:2125–34.

    CAS  PubMed  Google Scholar 

  3. Bosch AN, Weltan SM, Dennis SC, et al. Fuel substrate turnover and oxidation and glycogen sparing with carbohydrate ingestion in non-carbohydrate-loaded cyclists. Eur J Appl Physiol. 1996;432:1003–10.

    Article  CAS  Google Scholar 

  4. Jeukendrup AE, Brouns F, Wagenmakers AJ, et al. Carbohydrate-electrolyte feedings improve 1 h time trial cycling performance. Int J Sports Med. 1997;18:125–9.

    Article  CAS  PubMed  Google Scholar 

  5. Hawley JA, Palmer GS, Noakes TD. Effects of 3 days of carbohydrate supplementation on muscle glycogen content and utilization during a 1-h cycling performance. Eur J Appl Physiol Occup Physiol. 1997;75:407–12.

    Article  CAS  PubMed  Google Scholar 

  6. Carter JM, Jeukendrup AE, Mann CH, et al. The effect of glucose infusion on glucose kinetics during a 1-h time trial. Med Sci Sport Exerc. 2004;36(9):1543–50.

    Article  Google Scholar 

  7. Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sport Exerc. 2004;36(12):2107–11.

    Article  CAS  Google Scholar 

  8. Borg G. Psychophysical bases of perceived exertion. Med Sci Sport Exerc. 1982;14(5):377–81.

  9. Jeukendrup AE, Chambers ES. Oral carbohydrate sensing and exercise performance. Curr Opin Clin Nutr. 2010;13(4):447–51.

    Article  CAS  Google Scholar 

  10. Burke LM, Maughan RJ. The Governor has a sweet tooth: mouth sensing of nutrients to enhance sports performance. Eur J Sport Sci. 2014;15(1):29–40.

    Article  PubMed  Google Scholar 

  11. Chong E, Guelfi KJ, Fournier PA. Effect of a carbohydrate mouth rinse on maximal sprint performance in competitive male cyclists. J Sci Med Sport. 2011;14(2):162–7.

    Article  CAS  PubMed  Google Scholar 

  12. Bortolotti H, Pereira LA, Oliveira RS, et al. Carbohydrate mouth rinse does not improve repeated sprint performance. Rev Bras Cineantropom Desempenho Hum. 2013;15(6):639–45.

    Article  Google Scholar 

  13. Dorling JL, Earnest CP. Effect of carbohydrate mouth rinsing on multiple sprint performance. J Int Soc Sport Nutr. 2013;10. doi:10.1186/1550-2783-10-41.

  14. Beaven MC, Maulder P, Pooley A, et al. Effects of caffeine and carbohydrate mouth rinses on repeated sprint performance. Appl Physiol Nutr Metab. 2013;38(6):633–7.

    Article  CAS  PubMed  Google Scholar 

  15. Phillips SM, Findlay S, Kavaliauskas M, et al. The influence of serial carbohydrate mouth rinsing on power output during a cycle sprint. J Sport Sci Med. 2014;13(2):252–8.

    Google Scholar 

  16. Gant N, Stinear CM, Byblow WD. Carbohydrate in the mouth immediately facilitates motor output. Brain Res. 2010;1350:151–8.

    Article  CAS  PubMed  Google Scholar 

  17. Painelli VS, Roschel H, Gualano B, et al. The effect of carbohydrate mouth rinse on maximal strength and strength endurance. Eur J Appl Physiol. 2011;111(9):2381–6.

    Article  CAS  PubMed  Google Scholar 

  18. Chong E, Guelfi KJ, Fournier PA. Combined glucose ingestion and mouth rinsing improves sprint cycling performance. Int J Sport Nutr Exerc Metab. 2014;24(6):605–12.

    Article  PubMed  Google Scholar 

  19. Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol. 2009;587(8):1779–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Turner CE, Byblow WD, Stinear CM, et al. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception. Appetite. 2014;80:212–9.

    Article  PubMed  Google Scholar 

  21. Zald DH, Hagen MC, Pardo JV. Neural correlates of tasting concentrated quinine and sugar solutions. J Neurophysiol. 2002;87(2):1068–75.

    PubMed  Google Scholar 

  22. Small DM, Gregory MD, Mak YE, et al. Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron. 2003;39(4):701–11.

    Article  CAS  PubMed  Google Scholar 

  23. Critchley HD. Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol. 2005;493:154–66.

    Article  PubMed  Google Scholar 

  24. Kelley AE, Baldo BA, Pratt WE, et al. Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav. 2005;86(5):773–95.

    Article  CAS  PubMed  Google Scholar 

  25. Rousmans S, Robin O, Dittmar A, et al. Autonomic nervous system responses associated with primary tastes. Chem Senses. 2000;25(6):709–18.

    Article  CAS  PubMed  Google Scholar 

  26. Robin O, Rousmans S, Dittmar A, et al. Gender influence on emotional responses to primary tastes. Physiol Behav. 2003;78(3):385–93.

    Article  CAS  PubMed  Google Scholar 

  27. Carretie L, Albert J, Lopez-Martin S, et al. Negative brain: an integrative review on the neural processes activated by unpleasant stimuli. Int J Psychophysiol. 2009;71(1):57–63.

    Article  PubMed  Google Scholar 

  28. Meyerhof W. Elucidation of mammalian bitter taste. Rev Physiol Biochem Pharmacol. 2005;154:37–72.

    Article  CAS  PubMed  Google Scholar 

  29. Drewitt PN, Butterworth KR, Springall CD, et al. Toxicity threshold of quinine hydrochloride following low-level repeated dosing in healthy volunteers. Food Chem Toxicol. 1993;31(4):235–45.

    Article  CAS  PubMed  Google Scholar 

  30. Pasvol G. The treatment of complicated and severe malaria. Br Med Bull. 2006;75–76:29–47.

    Article  PubMed  Google Scholar 

  31. Keast RSJ, Roper J. A complex relationship among chemical concentration, detection threshold, and suprathreshold intensity of bitter compounds. Chem Senses. 2007;32(3):245–53.

    Article  CAS  PubMed  Google Scholar 

  32. Behrens M, Foerster S, Staehler F, et al. Gustatory expression pattern of the human Tas2R bitter receptor gene family reveals a heterogenous population of bitter responsive taste receptor cells. J Neurosci. 2007;27(46):12630–40.

    Article  CAS  PubMed  Google Scholar 

  33. Gam S, Guelfi KJ, Fournier PA. Mouth rinsing and ingesting a bitter solution improves sprint cycling performance. Med Sci Sport Exerc. 2014;46(8):1648–57.

    Article  Google Scholar 

  34. Gam S, Tan M, Guelfi KJ, et al. Mouth rinsing with a bitter solution without ingestion does not improve sprint cycling performance. Eur J Appl Physiol. 2015;115(1):129–38.

    Article  PubMed  Google Scholar 

  35. Gam S, Guelfi KJ, Hammond G, et al. Mouth rinsing and ingestion of a bitter-tasting solution increases corticomotor excitability in male competitive cyclists. Eur J Appl Physiol. 2015;115(10):2199–204.

    Article  PubMed  Google Scholar 

  36. Chen R, Tam A, Butefisch C, et al. Intracortical inhibition and facilitation in different representations of the human motor cortex. J Neurophysiol. 1998;80(6):2870–81.

    CAS  PubMed  Google Scholar 

  37. Roatta S, Farina D. Sympathetic actions on the skeletal muscle. Exerc Sport Sci Rev. 2010;38(1):31–5.

    Article  PubMed  Google Scholar 

  38. Vieira JLF, Midio AF. Drug monitoring of quinine in men with nonsevere falciparum malaria: study in the Amazon region of Brazil. Ther Drug Monit. 2001;23(6):612–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon Gam.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Sharon Gam, Kym Guelfi and Paul Fournier declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gam, S., Guelfi, K.J. & Fournier, P.A. New Insights into Enhancing Maximal Exercise Performance Through the Use of a Bitter Tastant. Sports Med 46, 1385–1390 (2016). https://doi.org/10.1007/s40279-016-0522-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0522-0

Keywords

Navigation