Skip to main content
Log in

Optimized Antimicrobial Dosing Strategies: A Survey of Pediatric Hospitals

  • Original Research Article
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Background

Extended-interval aminoglycoside (EIAG) and extended- and continuous-infusion β-lactam (EIBL and CIBL) dosing strategies are increasingly used in adults, but pediatric literature is limited.

Objective

The objective of this study was to describe the use of EIAG, EIBL, and CIBL dosing in pediatric hospitals in the USA.

Study Design, Setting, and Participants

A national survey of children’s hospitals was conducted. A single practitioner from each target hospital was identified through the Children’s Hospital Association. Practice-based survey questions identified whether hospitals utilize EIAG, EIBL, and CIBL dosing.

Main Outcome Measure

The main outcome measure was the percentage utilization of the dosing strategies, with secondary outcomes being the reasons for not using these dosing strategies.

Results

Seventy-seven of 215 identified practitioners (36 %) participated in the survey. EIAG, EIBL, and CIBL dosing were utilized in 63 %, 24 %, and 13 % of responding hospitals, respectively. The most common reasons for not using EIAG were concern regarding lack of efficacy data (56 %) and concern regarding the duration of the drug-free period (41 %). Respondents who did not utilize EIBL cited concern due to lack of pediatric EIBL efficacy data (54 %), the need for more intravenous access (54 %), intravenous medication compatibility issues (39 %), and the time during which the patient is attached to an intravenous infusion (31 %).

Conclusion

This survey of children’s hospitals indicates that EIAG is used in over 50 % of hospitals, but there is some lag in adoption of EIBL and CIBL dosing, both of which are used in fewer than 25 % of hospitals. Additional studies may provide much-needed evidence to increase the utilization of these strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Qin X, Zerr DM, Weissman SJ, Englund JA, et al. Prevalence and mechanisms of broad-spectrum beta-lactam resistance in Enterobacteriaceae: a children’s hospital experience. Antimicrob Agents Chemother. 2008;52:3909–14. doi:10.1128/AAC.00622-08.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. El-Mahallawy HA, El-Wakil M, Moneer MM, Shalaby L. Antibiotic resistance is associated with longer bacteremic episodes and worse outcomes in febrile neutropenic children with cancer. Pediatr Blood Cancer. 2011;57:283–8. doi:10.1002/pbc.22926.

    Article  PubMed  Google Scholar 

  3. Downes KJ, Hahn A, Wiles J, Courter JD, Vinks AA. Dose optimization of antibiotics in children: application of pharmacokinetics/pharmacodynamics in paediatrics. Int J Antimicrob Agents. 2014;43:223–30. doi:10.1016/j.ijantimicag.2013.11.006.

    Article  CAS  PubMed  Google Scholar 

  4. Lodise TP Jr, Lomaestro B, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis. 2007;44(3):357–63.

    Article  CAS  PubMed  Google Scholar 

  5. Lodise TP Jr, Lomaestro B, Drusano GL. Application of antimicrobial pharmacodynamics concepts into clinical practice: focus on β-lactam antibiotics. Pharmacotherapy. 2006;26:1320–32.

    Article  CAS  PubMed  Google Scholar 

  6. Falagas ME, Tansarli GS, Ikawa K, Vardakas KZ. Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis. 2013;56:272–82. doi:10.1093/cid/cis857.

    Article  CAS  PubMed  Google Scholar 

  7. Nicolau DP, Freeman CD, Belliveau PP, Nightingale CH, Ross JW, Quintiliani R. Experience with an once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother. 1995;39:650–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Contopoulos-Ioannidis DG, Giotis ND, Baliatsa DV, Ioannidis JPA. Extended-interval aminoglycoside administration for children: a meta-analysis. Pediatrics. 2004;114:e111. doi:10.1542/peds.114.1.e111.

    Article  PubMed  Google Scholar 

  9. Knoderer CA, Everett JA, Buss WF. Clinical issues surrounding once-daily aminoglycoside dosing in children. Pharmacotherapy. 2003;23:44–56.

    Article  PubMed  Google Scholar 

  10. Nichols KR, Knoderer CA, Cox EG, Kays MB. System-wide implementation of the use of an extended-infusion piperacillin/tazobactam dosing strategy: feasibility of utilization from a children’s hospital perspective. Clin Ther. 2012;34:1459–65. doi:10.1016/j.clinthera.2012.05.005.

    Article  CAS  PubMed  Google Scholar 

  11. Knoderer CA, Morris JL, Cox EG. Continuous infusion of nafcillin for sternal osteomyelitis in an infant following cardiac surgery. J Pediatr Pharmacol Ther. 2010;15:49–54.

    PubMed Central  PubMed  Google Scholar 

  12. Walker MC, Lam WM, Manasco KB. Continuous and extended-infusions of β-lactam antibiotics in the pediatric population. Ann Pharmacother. 2012;46:1537–46. doi:10.1345/aph.1R216.

    Article  PubMed  Google Scholar 

  13. Courter JD, Kuti JL, Girotto JE, Nicolau DP. Optimizing bactericidal exposure for β-lactams using prolonged and continuous infusions in the pediatric population. Pediatr Blood Cancer. 2009;53:379–85. doi:10.1002/pbc.22051.

    Article  PubMed  Google Scholar 

  14. Cies JJ, Shankar V, Schlichting C, Kuti JL. Population pharmacokinetics of piperacillin/tazobactam in critically ill chidren. Pediatr Infec Dis J. 2014;33:168–73. doi:10.1097/INF.0b013e3182a743c7.

    Article  Google Scholar 

  15. Prescott WA Jr. National survey of extended-interval aminoglycoside dosing in pediatric cystic fibrosis pulmonary exacerbations. J Pediatr Pharmacol Ther. 2011;16:262–9. doi:10.5863/1551-6776-16.4.262.

    PubMed Central  PubMed  Google Scholar 

  16. Chuck SK, Raber SR, Rodvold KA, Areff D. National survey of extended-interval aminoglycoside dosing. Clin Infect Dis. 2000;30:433–9. doi:10.1086/313692.

    Article  CAS  PubMed  Google Scholar 

  17. Tamma PD, Turnbull AE, Milstone AM, Hsu AJ, Carroll KC, Cosgrove SE. Does the piperacillin minimum inhibitory concentration for Pseudomonas aeruginosa influence clinical outcomes of children with pseudomonal bacteremia? Clin Infect Dis. 2012;55:799–806. doi:10.1093/cid/cis545.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Newland JG, Hersh AL. Purpose and design of antimicrobial stewardship programs in pediatrics. Pediatr Infect Dis J. 2010;29:862–3. doi:10.1097/INF.0b013e3181ef2507.

    Article  PubMed  Google Scholar 

  19. Dellit TH, Owens RC, McGowan JE Jr, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an hospital program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44:159–77.

    Article  PubMed  Google Scholar 

  20. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology—drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349:1157–67.

    Article  CAS  PubMed  Google Scholar 

  21. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antimicrobial dosing of mice and men. Clin Infect Dis. 1998;26:1–10.

    Article  CAS  PubMed  Google Scholar 

  22. Rubino CM, Bradley JS. Optimizing therapy with antimicrobial agents: use of pharmacokinetic-pharmacodynamic principles in pediatrics. Paediatr Drugs. 2007;9:361–9.

    Article  PubMed  Google Scholar 

  23. Lopez SA, Mulla H, Durward A, Tibby SM. Extended-interval gentamicin: population pharmacokinetics in pediatric critical illness. Pediatr Crit Care Med. 2010;11:267–74. doi:10.1097/PCC.0b013e3181b80693.

    Article  PubMed  Google Scholar 

  24. DeRyke AC, Lee SY, Kuti JL, Nicolau DP. Optimising dosing strategies of antimicrobials utilising pharmacodynamic principles: impact on the development of resistance. Drugs. 2006;66:1–14.

    Article  CAS  PubMed  Google Scholar 

  25. Schumock GT, Raber SR, Crawford SY, Naderer OJ, Rodvold KA. National survey of once-daily dosing of aminoglycoside antibiotics. Pharmacotherapy. 1995;15(2):201–9.

    CAS  PubMed  Google Scholar 

  26. Kraus DM, Pai MP, Rodvold KA. Efficacy and tolerability of extended-interval aminoglycoside administration in pediatric patients. Paediatr Drugs. 2002;4:468–84.

    Article  Google Scholar 

  27. Nestaas E, Bangstad HJ, Sandvik L, Wathne KO. Aminoglycoside extended interval dosing in neonates is safe and effective: a meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2005;90:F294–300. doi:10.1136/adc.2004.056317.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Vogelman BS, Craig WA. Postantibiotic effects. J Antimicrob Chemother. 1985;15(suppl A):37–46.

    Article  CAS  PubMed  Google Scholar 

  29. Van der Auwera P, Klastersky J. Serum bactericidal activity and postantibiotic effect in serum of patients with urinary tract infection receiving high-dose amikacin. Antimicrob Agents Chemother. 1987;31(7):1061–1068.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Conflicts of interest

C.A. Knoderer, K.R. Nichols, and E.G. Fox have no potential conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chad A. Knoderer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knoderer, C.A., Nichols, K.R. & Cox, E.G. Optimized Antimicrobial Dosing Strategies: A Survey of Pediatric Hospitals. Pediatr Drugs 16, 523–529 (2014). https://doi.org/10.1007/s40272-014-0093-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-014-0093-1

Keywords

Navigation