Skip to main content
Log in

Clinical Implications of P-Glycoprotein Modulation in Drug–Drug Interactions

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Drug–drug interactions (DDIs) occur commonly and may lead to severe adverse drug reactions if not handled appropriately. Considerable information to support clinical decision making regarding potential DDIs is available in the literature and through various systems providing electronic decision support for healthcare providers. The challenge for the prescribing physician lies in sorting out the evidence and identifying those drugs for which potential interactions are likely to become clinically manifest. P-glycoprotein (P-gp) is a drug transporting protein that is found in the plasma membranes in cells of barrier and elimination organs, and plays a role in drug absorption and excretion. Increasingly, P-gp has been acknowledged as an important player in potential DDIs and a growing body of information on the role of this transporter in DDIs has become available from research and from the drug approval process. This has led to a clear need for a comprehensive review of P-gp-mediated DDIs with a focus on highlighting the drugs that are likely to lead to clinically relevant DDIs. The objective of this review is to provide information for identifying and interpreting evidence of P-gp-mediated DDIs and to suggest a classification for individual drugs based on both in vitro and in vivo evidence (substrates, inhibitors and inducers). Further, various ways of handling potential DDIs in clinical practice are described and exemplified in relation to drugs interfering with P-gp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hallas J, Gram LF, Grodum E, Damsbo N, Brøsen K, Haghfelt T, et al. Drug related admissions to medical wards: a population based survey. Br J Clin Pharmacol. 1992;33:61–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fattinger K, Roos M, Vergères P, Holenstein C, Kind B, Masche U, et al. Epidemiology of drug exposure and adverse drug reactions in two swiss departments of internal medicine. Br J Clin Pharmacol. 2000;49:158–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Classen DC, Pestotnik SL, Evans RS, Lloyd JF, Burke JP. Adverse drug events in hospitalized patients. Excess length of stay, extra costs, and attributable mortality. JAMA. 1997;277:301–6.

    Article  CAS  PubMed  Google Scholar 

  4. Bates DW, Spell N, Cullen DJ, Burdick E, Laird N, Petersen LA, et al. The costs of adverse drug events in hospitalized patients. Adverse Drug Events Prevention Study Group. JAMA. 1997;277:307–11.

    Article  CAS  PubMed  Google Scholar 

  5. Juurlink DN, Mamdani M, Kopp A, Laupacis A, Redelmeier DA. Drug-drug interactions among elderly patients hospitalized for drug toxicity. JAMA. 2003;289:1652–8.

    Article  CAS  PubMed  Google Scholar 

  6. Pirmohamed M, James S, Meakin S, Green C, Scott AK, Walley TJ, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329:15–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Preston C, editor. Stockley’s drug interactions. 11th ed. London: Pharmaceutical Press; 2016. pp. 1, 405–407, 942.

  8. Malone DC, Abarca J, Hansten PD, Grizzle AJ, Armstrong EP, Van Bergen RC, et al. Identification of serious drug-drug interactions: results of the partnership to prevent drug–drug interactions. J Am Pharm Assoc. 2003;44:142–51.

    Google Scholar 

  9. Hines LE, Malone DC, Murphy JE. Recommendations for generating, evaluating, and implementing drug–drug interaction evidence. Pharmacotherapy. 2012;32:304–13.

    Article  CAS  PubMed  Google Scholar 

  10. Glintborg B, Andersen SE, Dalhoff K. Drug–drug interactions among recently hospitalised patients–frequent but mostly clinically insignificant. Eur J Clin Pharmacol. 2005;61:675–81.

    Article  PubMed  Google Scholar 

  11. Delaney JA, Opatrny L, Brophy JM, Suissa S. Drug drug interactions between antithrombotic medications and the risk of gastrointestinal bleeding. Can Med Assoc J. 2007;177:347–51.

    Article  Google Scholar 

  12. Hurlen M, Abdelnoor M, Smith P, Erikssen J, Arnesen H. Warfarin, aspirin, or both after myocardial infarction. N Engl J Med. 2002;347:969–74.

    Article  CAS  PubMed  Google Scholar 

  13. Tannenbaum C, Sheehan NL. Understanding and preventing drug–drug and drug–gene interactions. Expert Rev Clin Pharmacol. 2014;7:533–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dassa E, Bouige P. The ABC of ABCS: a phylogenetic and functional classification of ABC systems in living organisms. Res Microbiol. 2001;152:211–29.

    Article  CAS  PubMed  Google Scholar 

  15. Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res. 2001;11:1156–66.

    Article  CAS  PubMed  Google Scholar 

  16. Hodges LM, Markova SM, Chinn LW, Gow JM, Kroetz DL, Klein TE, et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genom. 2011;21:152–61.

    Article  CAS  Google Scholar 

  17. Zhou S-F. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica. 2008;38:802–32.

    Article  CAS  PubMed  Google Scholar 

  18. Seelig A. A general pattern for substrate recognition by P-glycoprotein. Eur J Biochem. 1998;251:252–61.

    Article  CAS  PubMed  Google Scholar 

  19. Etievant C, Schambel P, Guminski Y, Barret JM, Imbert T, Hill BT. Requirements for P-glycoprotein recognition based on structure-activity relationships in the podophyllotoxin series. Anticancer Drug Des. 1998;13:317–36.

    CAS  PubMed  Google Scholar 

  20. Scala S, Akhmed N, Rao US, Paull K, Lan LB, Dickstein B, et al. P-glycoprotein substrates and antagonists cluster into two distinct groups. Mol Pharmacol. 1997;51:1024–33.

    CAS  PubMed  Google Scholar 

  21. Kuwano M, Oda Y, Izumi H, Yang S-J, Uchiumi T, Iwamoto Y, et al. The role of nuclear Y-box binding protein 1 as a global marker in drug resistance. Mol Cancer Ther. 2004;3:1485–92.

    CAS  PubMed  Google Scholar 

  22. Miller DS, Bauer B, Hartz AMS. Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev. 2008;60:196–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature. Clin Pharmacokinet. 2015;54:709–35.

    Article  CAS  PubMed  Google Scholar 

  24. Marzolini C, Paus E, Buclin T, Kim RB. Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther. 2004;75:13–33.

    Article  CAS  PubMed  Google Scholar 

  25. Wacher VJ, Wu CY, Benet LZ. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog. 1995;13:129–34.

    Article  CAS  PubMed  Google Scholar 

  26. Kim RB, Wandel C, Leake B, Cvetkovic M, Fromm MF, Dempsey PJ, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res. 1999;16:408–14.

    Article  CAS  PubMed  Google Scholar 

  27. Christians U. Transport proteins and intestinal metabolism: P-glycoprotein and cytochrome P4503A. Ther Drug Monit. 2004;26:104–6.

    Article  CAS  PubMed  Google Scholar 

  28. Murray GI, Barnes TS, Sewell HF, Ewen SW, Melvin WT, Burke MD. The immunocytochemical localisation and distribution of cytochrome P-450 in normal human hepatic and extrahepatic tissues with a monoclonal antibody to human cytochrome P-450. Br J Clin Pharmacol. 1988;25:465–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Benet LZ, Cummins CL. The drug efflux-metabolism alliance: biochemical aspects. Adv Drug Deliv Rev. 2001;50(Suppl 1):S3–11.

    Article  CAS  PubMed  Google Scholar 

  30. Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    Article  CAS  PubMed  Google Scholar 

  31. European Medicines Agency. Guideline on the investigation of drug interactions CPMP/EWP/560/95/Rev. 1 Corr. 2**. 2012. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129606.pdf.

  32. U.S. Food and Drug Administration. Guidance for industry drug interaction studies—study design, data analysis, implications for dosing, and labeling recommendations. Draft Guidance. 2012.

  33. Wessler JD, Grip LT, Mendell J, Giugliano RP. The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol. 2013;61:2495–502.

    Article  CAS  PubMed  Google Scholar 

  34. Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2003;55:3–29.

    Article  CAS  PubMed  Google Scholar 

  35. Fromm MF. The influence of MDR1 polymorphisms on P-glycoprotein expression and function in humans. Adv Drug Deliv Rev. 2002;54:1295–310.

    Article  CAS  PubMed  Google Scholar 

  36. U.S. Food and Drug Administration. Drug Development and drug interactions: table of substrates, inhibitors and inducers. http://www.fda.gov/drugs/developmentapprovalprocess/developmentresources/druginteractionslabeling/ucm093664.htm. Accessed 22 Jan 2015.

  37. Matsson P, Pedersen JM, Norinder U, Bergström CAS, Artursson P. Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters P-gp, BCRP and MRP2 among registered drugs. Pharm Res. 2009;26:1816–31.

    Article  CAS  PubMed  Google Scholar 

  38. Danish Medicines Agency (Lægemiddelstyrelsen). Drugs with compassionate reporting requirements. http://laegemiddelstyrelsen.dk/da/bivirkninger/bivirkninger-ved-medicin/medicin-med-skaerpet-indberetningspligt. Accessed 23 Jan 2015.

  39. European Medicines Agency. European Public Assessment Reports. http://www.ema.europa.eu/ema/index.jsp?curl=pages%2Fmedicines%2Flanding%2Fepar_search.jsp&murl=menus%2Fmedicines%2Fmedicines.jsp&mid=WC0b01ac058001d124&searchkwByEnter=false&alreadyLoaded=true&status=Authorised&status=Withdrawn&status=Suspended&status=Ref.

  40. Lægemiddelstyrelsen (Danish Medicines Authority). Summary of Product Characteristics. www.produktresume.dk.

  41. U.S. Food and Drug Administration. FDA approved drug products. https://www.accessdata.fda.gov/scripts/cder/drugsatfda/.

  42. Huang S-M, Strong JM, Zhang L, Reynolds KS, Nallani S, Temple R, et al. New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. J Clin Pharmacol. 2008;48:662–70.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang L, Zhang YD, Strong JM, Reynolds KS, Huang S-M. A regulatory viewpoint on transporter-based drug interactions. Xenobiotica. 2008;38:709–24.

    Article  CAS  PubMed  Google Scholar 

  44. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 202806Orig1s000 Tafinlar.

  45. European Medicines Agency. Summary of Product Characteristics Rasilez (version dated 07/07/2015).

  46. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 203100 Stribild.

  47. European Medicines Agency. Summary of Product Characteristics Stribild (version dated 05/08/2015).

  48. European Medicines Agency. Summary of Product Characteristics Tybost (version dated 04/06/2015).

  49. Larsen UL, Olesen HL, Nyvold GC, Eriksen J, Jakobsen P, Østergaard M, et al. Human intestinal P-glycoprotein activity estimated by the model substrate digoxin. Scand J Clin Lab Investig. 2007;67:123–34.

    Article  CAS  Google Scholar 

  50. Tannergren C, Knutson T, Knutson L, Lennernäs H. The effect of ketoconazole on the in vivo intestinal permeability of fexofenadine using a regional perfusion technique. Br J Clin Pharmacol. 2003;55:182–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. U.S. Food and Drug Administration. Label Allegra, 60mg capsules (action date 25/07/1996).

  52. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 22-512 Pradaxa.

  53. Hill CR, Jamieson D, Thomas HD, Brown CDA, Boddy AV, Veal GJ. Characterisation of the roles of ABCB1, ABCC1, ABCC2 and ABCG2 in the transport and pharmacokinetics of actinomycin D in vitro and in vivo. Biochem Pharmacol. 2013;85:29–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Theis JG, Chan HS, Greenberg ML, Malkin D, Karaskov V, Moncica I, et al. Increased systemic toxicity of sarcoma chemotherapy due to combination with the P-glycoprotein inhibitor cyclosporin. Int J Clin Pharmacol Ther. 1998;36:61–4.

    CAS  PubMed  Google Scholar 

  55. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 201292 Gilotrif.

  56. European Medicines Agency. European Public Assessment Report Giotrif (version dated 16/10/2013).

  57. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 205437Orig1s000 Otezla.

  58. European Medicines Agency. Summary of Product Characteristics Otezla (version dated 08/02/2016).

  59. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 203756Orig1s000 Cometriq.

  60. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 205755 Zykadia.

  61. European Medicines Agency. Summary of Product Characteristics Zykadia (version dated 28/09/2015).

  62. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem. 1993;268:6077–80.

    CAS  PubMed  Google Scholar 

  63. Gupta SK, Bakran A, Johnson RW, Rowland M. Erythromycin enhances the absorption of cyclosporin. Br J Clin Pharmacol. 1988;25:401–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gupta SK, Bakran A, Johnson RW, Rowland M. Cyclosporin-erythromycin interaction in renal transplant patients. Br J Clin Pharmacol. 1989;27:475–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fricker G, Drewe J, Huwyler J, Gutmann H, Beglinger C. Relevance of p-glycoprotein for the enteral absorption of cyclosporin A: in vitro–in vivo correlation. Br J Pharmacol. 1996;118:1841–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lown KS, Mayo RR, Leichtman AB, Hsiao HL, Turgeon DK, Schmiedlin-Ren P, et al. Role of intestinal P-glycoprotein (mdr1) in interpatient variation in the oral bioavailability of cyclosporine. Clin Pharmacol Ther. 1997;62:248–60.

    Article  CAS  PubMed  Google Scholar 

  67. Lumen AA, Li L, Li J, Ahmed Z, Meng Z, Owen A, et al. Transport inhibition of digoxin using several common P-gp expressing cell lines is not necessarily reporting only on inhibitor binding to P-gp. PLoS One. 2013;8:e69394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Dorian P, Strauss M, Cardella C, David T, East S, Ogilvie R. Digoxin-cyclosporine interaction: severe digitalis toxicity after cyclosporine treatment. Clin Invest Med. 1988;11:108–12.

    CAS  PubMed  Google Scholar 

  69. Fenner KS, Troutman MD, Kempshall S, Cook JA, Ware JA, Smith DA, et al. Drug–drug interactions mediated through P-glycoprotein: clinical relevance and in vitro–in vivo correlation using digoxin as a probe drug. Clin Pharmacol Ther. 2009;85:173–81.

    Article  CAS  PubMed  Google Scholar 

  70. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 21-976 Prezista.

  71. U.S. Food and Drug Administration. Label Prezista, oral suspension and tablets for oral use (action date 27/05/2015).

  72. Tidefelt U, Liliemark J, Gruber A, Liliemark E, Sundman-Engberg B, Juliusson G, et al. P-glycoprotein inhibitor valspodar (PSC 833) increases the intracellular concentrations of daunorubicin in vivo in patients with P-glycoprotein-positive acute myeloid leukemia. J Clin Oncol. 2000;18:1837–44.

    Article  CAS  PubMed  Google Scholar 

  73. Wils P, Phung-Ba V, Warnery A, Lechardeur D, Raeissi S, Hidalgo IJ, et al. Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem Pharmacol. 1994;48:1528–30.

    Article  CAS  PubMed  Google Scholar 

  74. Figg WD, Woo S, Zhu W, Chen X, Ajiboye AS, Steinberg SM, et al. A phase I clinical study of high dose ketoconazole plus weekly docetaxel for metastatic castration resistant prostate cancer. J Urol. 2010;183:2219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Malingré MM, Richel DJ, Beijnen JH, Rosing H, Koopman FJ, Ten Bokkel Huinink WW, et al. Coadministration of cyclosporine strongly enhances the oral bioavailability of docetaxel. J Clin Oncol. 2001;19:1160–6.

    Article  PubMed  Google Scholar 

  76. Morschhauser F, Zinzani PL, Burgess M, Sloots L, Bouafia F, Dumontet C. Phase I/II trial of a P-glycoprotein inhibitor, Zosuquidar. 3HCl trihydrochloride (LY335979), given orally in combination with the CHOP regimen in patients with non-Hodgkin’s lymphoma. Leuk Lymphoma. 2007;48:708–15.

    Article  CAS  PubMed  Google Scholar 

  77. Troutman MD, Thakker DR. Rhodamine 123 requires carrier-mediated influx for its activity as a P-glycoprotein substrate in Caco-2 cells. Pharm Res. 2003;20:1192–9.

    Article  CAS  PubMed  Google Scholar 

  78. Kim J-E, Cho H-J, Kim JS, Shim C-K, Chung S-J, Oak M-H, et al. The limited intestinal absorption via paracellular pathway is responsible for the low oral bioavailability of doxorubicin. Xenobiotica. 2013;43:579–91.

    Article  CAS  PubMed  Google Scholar 

  79. Giaccone G, Linn SC, Welink J, Catimel G, Stieltjes H, van der Vijgh WJ, et al. A dose-finding and pharmacokinetic study of reversal of multidrug resistance with SDZ PSC 833 in combination with doxorubicin in patients with solid tumors. Clin Cancer Res. 1997;3:2005–15.

    CAS  PubMed  Google Scholar 

  80. Bartlett NL, Lum BL, Fisher GA, Brophy NA, Ehsan MN, Halsey J, et al. Phase I trial of doxorubicin with cyclosporine as a modulator of multidrug resistance. J Clin Oncol. 1994;12:835–42.

    Article  CAS  PubMed  Google Scholar 

  81. van der Sandt IC, Blom-Roosemalen MC, de Boer AG, Breimer DD. Specificity of doxorubicin versus rhodamine-123 in assessing P-glycoprotein functionality in the LLC-PK1, LLC-PK1:MDR1 and Caco-2 cell lines. Eur J Pharm Sci. 2000;11:207–14.

    Article  PubMed  Google Scholar 

  82. Lægemiddelstyrelsen (Danish Medicines Agency). Summary of Product Characteristics Doxorubicin “Teva” (version published online 23/09/2013).

  83. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 203415Orig1s000 Xtandi.

  84. European Medicines Agency. Summary of Product Characteristics Xtandi (version dated 29/10/2015).

  85. European Medicines Agency. Scientific discussion Tarceva (version dated 02/11/2005).

  86. European Medicines Agency. Summary of Product Characteristics Tarceva (version dated 03/02/2014).

  87. Boote DJ, Dennis IF, Twentyman PR, Osborne RJ, Laburte C, Hensel S, et al. Phase I study of etoposide with SDZ PSC 833 as a modulator of multidrug resistance in patients with cancer. J Clin Oncol. 1996;14:610–8.

    Article  CAS  PubMed  Google Scholar 

  88. Lum BL, Kaubisch S, Yahanda AM, Adler KM, Jew L, Ehsan MN, et al. Alteration of etoposide pharmacokinetics and pharmacodynamics by cyclosporine in a phase I trial to modulate multidrug resistance. J Clin Oncol. 1992;10:1635–42.

    Article  CAS  PubMed  Google Scholar 

  89. Guo A, Marinaro W, Hu P, Sinko PJ. Delineating the contribution of secretory transporters in the efflux of etoposide using Madin-Darby canine kidney (MDCK) cells overexpressing P-glycoprotein (Pgp), multidrug resistance-associated protein (MRP1), and canalicular multispecific organic anion. Drug Metab Dispos. 2002;30:457–63.

    Article  CAS  PubMed  Google Scholar 

  90. Lægemiddelstyrelsen (Danish Medicines Agency). Summary of Product Characteristics Etoposid “Accord” (version published online 30/11/2015).

  91. Lamoureux F, Picard N, Boussera B, Sauvage F-L, Marquet P. Sirolimus and everolimus intestinal absorption and interaction with calcineurin inhibitors: a differential effect between cyclosporine and tacrolimus. Fundam Clin Pharmacol. 2012;26:463–72.

    Article  CAS  PubMed  Google Scholar 

  92. European Medicines Agency. European Public Assessment Report Afinitor (version dated 02/09/2009).

  93. European Medicines Agency. Summary of Product Characteristics Afinitor (version dated 27/04/2015).

  94. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 22-334 Afinitor.

  95. European Medicines Agency. Summary of Product Characteristics Iressa (version dated 11/11/2014).

  96. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 205552Orig1s000 Imbruvica.

  97. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 206545Orig1s000 Zydelig.

  98. Giannoudis A, Davies A, Lucas CM, Harris RJ, Pirmohamed M, Clark RE. Effective dasatinib uptake may occur without human organic cation transporter 1 (hOCT1): implications for the treatment of imatinib-resistant chronic myeloid leukemia. Blood. 2008;112:3348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Eadie LN, Hughes TP, White DL. Interaction of the efflux transporters ABCB1 and ABCG2 with imatinib, nilotinib, and dasatinib. Clin Pharmacol Ther. 2014;95:294–306.

    Article  CAS  PubMed  Google Scholar 

  100. Hamada A, Miyano H, Watanabe H, Saito H. Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther. 2003;307:824–8.

    Article  CAS  PubMed  Google Scholar 

  101. European Medicines Agency. Summary of Product Characteristics Glivec (version dated 11/05/2015).

  102. Lægemiddelstyrelsen (Danish Medicines Agency). Summary of Product Characteristics Irinotecan “Stada” (version published online 15/05/2015).

  103. Bansal T, Mishra G, Jaggi M, Khar RK, Talegaonkar S. Effect of P-glycoprotein inhibitor, verapamil, on oral bioavailability and pharmacokinetics of irinotecan in rats. Eur J Pharm Sci. 2009;36:580–90.

    Article  CAS  PubMed  Google Scholar 

  104. Luo FR, Paranjpe PV, Guo A, Rubin E, Sinko P. Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and MRP1. Drug Metab Dispos. 2002;30:763–70.

    Article  CAS  PubMed  Google Scholar 

  105. European Medicines Agency. Summary of Product Characteristics Tyverb (version dated 11/08/2015).

  106. European Medicines Agency. European Public Assessment Report Tyverb (version dated 26/06/2008).

  107. Oka A, Oda M, Saitoh H, Nakayama A, Takada M, Aungst BJ. Secretory transport of methylprednisolone possibly mediated by P-glycoprotein in Caco-2 cells. Biol Pharm Bull. 2002;25:393–6.

    Article  CAS  PubMed  Google Scholar 

  108. Tomita M, Watanabe A, Fujinaga I, Yamakawa T, Hayashi M. Nonlinear absorption of methylprednisolone by absorptive and secretory transporters. Int J Pharm. 2010;387:1–6.

    Article  CAS  PubMed  Google Scholar 

  109. European Medicines Agency. Summary of Product Characteristics Tasigna (version dated 11/11/2015).

  110. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 22-068 Tasigna.

  111. Meerum Terwogt JM, Malingré MM, Beijnen JH, ten Bokkel Huinink WW, Rosing H, Koopman FJ, et al. Coadministration of oral cyclosporin A enables oral therapy with paclitaxel. Clin Cancer Res. 1999;5:3379–84.

    CAS  PubMed  Google Scholar 

  112. Berg SL, Tolcher A, O’Shaughnessy JA, Denicoff AM, Noone M, Ognibene FP, et al. Effect of R-verapamil on the pharmacokinetics of paclitaxel in women with breast cancer. J Clin Oncol. 1995;13:2039–42.

    Article  CAS  PubMed  Google Scholar 

  113. Taub ME, Podila L, Ely D, Almeida I. Functional assessment of multiple P-glycoprotein (P-gp) probe substrates: influence of cell line and modulator concentration on P-gp activity. Drug Metab Dispos. 2005;33:1679–87.

    Article  CAS  PubMed  Google Scholar 

  114. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 230-085 Regorafenib/Stivarga.

  115. European Medicines Agency. Summary of Product Characteristics Stivarga (version dated 09/12/2015).

  116. European Medicines Agency. Summary of Product Characteristics Rapamune (version dated 06/11/2015).

  117. Hebert MF, Fisher RM, Marsh CL, Dressler D, Bekersky I. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J Clin Pharmacol. 1999;39:91–6.

    Article  CAS  PubMed  Google Scholar 

  118. Hebert MF, Lam AY. Diltiazem increases tacrolimus concentrations. Ann Pharmacother. 1999;33:680–2.

    Article  CAS  PubMed  Google Scholar 

  119. Arima H, Yunomae K, Hirayama F, Uekama K. Contribution of P-glycoprotein to the enhancing effects of dimethyl-beta-cyclodextrin on oral bioavailability of tacrolimus. J Pharmacol Exp Ther. 2001;297:547–55.

    CAS  PubMed  Google Scholar 

  120. Lægemiddelstyrelsen (Danish Medicines Agency). Summary of Product Characteristics Prograf (version published online 08/02/2016).

  121. Lemahieu WPD, Hermann M, Asberg A, Verbeke K, Holdaas H, Vanrenterghem Y, et al. Combined therapy with atorvastatin and calcineurin inhibitors: no interactions with tacrolimus. Am J Transplant. 2005;5:2236–43.

    Article  CAS  PubMed  Google Scholar 

  122. Kishimoto W, Ishiguro N, Ludwig-Schwellinger E, Ebner T, Schaefer O. In vitro predictability of drug-drug interaction likelihood of P-glycoprotein-mediated efflux of dabigatran etexilate based on [I]2/IC50 threshold. Drug Metab Dispos. 2014;42:257–63.

    Article  CAS  PubMed  Google Scholar 

  123. Floren LC, Bekersky I, Benet LZ, Mekki Q, Dressler D, Lee JW, et al. Tacrolimus oral bioavailability doubles with coadministration of ketoconazole. Clin Pharmacol Ther. 1997;62:41–9.

    Article  CAS  PubMed  Google Scholar 

  124. Lin X, Skolnik S, Chen X, Wang J. Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model. Drug Metab Dispos. 2011;39:265–74.

    Article  CAS  PubMed  Google Scholar 

  125. Li H, Jin H-E, Kim W, Han Y-H, Kim D-D, Chung S-J, et al. Involvement of P-glycoprotein, multidrug resistance protein 2 and breast cancer resistance protein in the transport of belotecan and topotecan in Caco-2 and MDCKII cells. Pharm Res. 2008;25:2601–12.

    Article  CAS  PubMed  Google Scholar 

  126. Kruijtzer CMF, Beijnen JH, Rosing H, ten Bokkel Huinink WW, Schot M, Jewell RC, et al. Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol. 2002;20:2943–50.

    Article  CAS  PubMed  Google Scholar 

  127. European Medicines Agency. Summary of Product Characteristics Kadcyla (version dated 03/12/2015).

  128. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 125427Orig1s000 Kadcyla.

  129. Samuels BL, Mick R, Vogelzang NJ, Williams SF, Schilsky RL, Safa AR, et al. Modulation of vinblastine resistance with cyclosporine: a phase I study. Clin Pharmacol Ther. 1993;54:421–9.

    Article  CAS  PubMed  Google Scholar 

  130. Bates S, Kang M, Meadows B, Bakke S, Choyke P, Merino M, et al. A Phase I study of infusional vinblastine in combination with the P-glycoprotein antagonist PSC 833 (valspodar). Cancer. 2001;92:1577–90.

    Article  CAS  PubMed  Google Scholar 

  131. Huang RS, Murry DJ, Foster DR. Role of xenobiotic efflux transporters in resistance to vincristine. Biomed Pharmacother. 2008;62:59–64.

    Article  CAS  PubMed  Google Scholar 

  132. Samer CF, Lorenzini KI, Rollason V, Daali Y, Desmeules JA. Applications of CYP450 testing in the clinical setting. Mol Diagn Ther. 2013;17:165–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rebello S, Compain S, Feng A, Hariry S, Dieterich H-A, Jarugula V. Effect of cyclosporine on the pharmacokinetics of aliskiren in healthy subjects. J Clin Pharmacol. 2011;51:1549–60.

    Article  CAS  PubMed  Google Scholar 

  134. Vaidyanathan S, Camenisch G, Schuetz H, Reynolds C, Yeh C-M, Bizot M-N, et al. Pharmacokinetics of the oral direct renin inhibitor aliskiren in combination with digoxin, atorvastatin, and ketoconazole in healthy subjects: the role of P-glycoprotein in the disposition of aliskiren. J Clin Pharmacol. 2008;48:1323–38.

    Article  CAS  PubMed  Google Scholar 

  135. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 22081 Letairis.

  136. European Medicines Agency. Summary of Product Characteristics Volibris (version dated 12/01/2016).

  137. Robinson K, Johnston A, Walker S, Mulrow JP, McKenna WJ, Holt DW. The digoxin-amiodarone interaction. Cardiovasc Drugs Ther. 1989;3:25–8.

    Article  CAS  PubMed  Google Scholar 

  138. European Medicines Agency. Summary of Product Characteristics Eliquis (version dated 15/04/2016).

  139. Zhang D, He K, Herbst JJ, Kolb J, Shou W, Wang L, et al. Characterization of efflux transporters involved in distribution and disposition of apixaban. Drug Metab Dispos. 2013;41:827–35.

    Article  CAS  PubMed  Google Scholar 

  140. Wu X, Whitfield LR, Stewart BH. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter. Pharm Res. 2000;17:209–15.

    Article  CAS  PubMed  Google Scholar 

  141. Andrén L, Andreasson A, Eggertsen R. Interaction between a commercially available St. John’s wort product (Movina) and atorvastatin in patients with hypercholesterolemia. Eur J Clin Pharmacol. 2007;63:913–6.

    Article  PubMed  Google Scholar 

  142. Hermann M, Asberg A, Christensen H, Holdaas H, Hartmann A, Reubsaet JLE. Substantially elevated levels of atorvastatin and metabolites in cyclosporine-treated renal transplant recipients. Clin Pharmacol Ther. 2004;76:388–91.

    Article  CAS  PubMed  Google Scholar 

  143. Pham PA, la Porte CJL, Lee LS, van Heeswijk R, Sabo JP, Elgadi MM, et al. Differential effects of tipranavir plus ritonavir on atorvastatin or rosuvastatin pharmacokinetics in healthy volunteers. Antimicrob Agents Chemother. 2009;53:4385–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lægemiddelstyrelsen (Danish Medicines Agency). Summary of Product Characteristics Carvedilol “Sandoz” (version published online 21/12/2015).

  145. Bachmakov I, Werner U, Endress B, Auge D, Fromm MF. Characterization of beta-adrenoceptor antagonists as substrates and inhibitors of the drug transporter P-glycoprotein. Fundam Clin Pharmacol. 2006;20:273–82.

    Article  CAS  PubMed  Google Scholar 

  146. Baris N, Kalkan S, Güneri S, Bozdemir V, Guven H. Influence of carvedilol on serum digoxin levels in heart failure: is there any gender difference? Eur J Clin Pharmacol. 2006;62:535–8.

    Article  CAS  PubMed  Google Scholar 

  147. Oldham HG, Clarke SE. In vitro identification of the human cytochrome P450 enzymes involved in the metabolism of R(+)- and S(−)-carvedilol. Drug Metab Dispos. 1997;25:970–7.

    CAS  PubMed  Google Scholar 

  148. De Mey C, Brendel E, Enterling D. Carvedilol increases the systemic bioavailability of oral digoxin. Br J Clin Pharmacol. 1990;29:486–90.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Härtter S, Sennewald R, Nehmiz G, Reilly P. Oral bioavailability of dabigatran etexilate (Pradaxa®) after co-medication with verapamil in healthy subjects. Br J Clin Pharmacol. 2013;75:1053–62.

    Article  PubMed  CAS  Google Scholar 

  150. European Medicines Agency. Summary of Product Characteristics Pradaxa (version dated 09/12/2015).

  151. Ishiguro N, Kishimoto W, Volz A, Ludwig-Schwellinger E, Ebner T, Schaefer O. Impact of endogenous esterase activity on in vitro p-glycoprotein profiling of dabigatran etexilate in Caco-2 monolayers. Drug Metab Dispos. 2014;42:250–6.

    Article  CAS  PubMed  Google Scholar 

  152. Doering W. Quinidine–digoxin interaction: pharmacokinetics, underlying mechanism and clinical implications. N Engl J Med. 1979;301:400–4.

    Article  CAS  PubMed  Google Scholar 

  153. Mordel A, Halkin H, Zulty L, Almog S, Ezra D. Quinidine enhances digitalis toxicity at therapeutic serum digoxin levels. Clin Pharmacol Ther. 1993;53:457–62.

    Article  CAS  PubMed  Google Scholar 

  154. Woodland C, Ito S, Koren G. A model for the prediction of digoxin-drug interactions at the renal tubular cell level. Ther Drug Monit. 1998;20:134–8.

    Article  CAS  PubMed  Google Scholar 

  155. Pedersen KE, Christiansen BD, Klitgaard NA, Nielsen-Kudsk F. Effect of quinidine on digoxin bioavailability. Eur J Clin Pharmacol. 1983;24:41–7.

    Article  CAS  PubMed  Google Scholar 

  156. Shimizu M, Uno T, Sugawara K, Tateishi T. Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br J Clin Pharmacol. 2006;61:538–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Mahgoub AA, El-Medany AH, Abdulatif AS. A comparison between the effects of diltiazem and isosorbide dinitrate on digoxin pharmacodynamics and kinetics in the treatment of patients with chronic ischemic heart failure. Saudi Med J. 2002;23:725–31.

    PubMed  Google Scholar 

  158. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics review(s) NDA 22425 Multaq.

  159. Vallakati A, Chandra PA, Pednekar M, Frankel R, Shani J. Dronedarone-induced digoxin toxicity: new drug, new interactions. Am J Ther. 2013;20:e717–9.

    Article  PubMed  Google Scholar 

  160. Mendell J, Zahir H, Matsushima N, Noveck R, Lee F, Chen S, et al. Drug-drug interaction studies of cardiovascular drugs involving P-glycoprotein, an efflux transporter, on the pharmacokinetics of edoxaban, an oral factor Xa inhibitor. Am J Cardiovasc Drugs. 2013;13:331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mikkaichi T, Yoshigae Y, Masumoto H, Imaoka T, Rozehnal V, Fischer T, et al. Edoxaban transport via P-glycoprotein is a key factor for the drug’s disposition. Drug Metab Dispos. 2014;42:520–8.

    Article  PubMed  CAS  Google Scholar 

  162. European Medicines Agency. Summary of Product Characteristics Lixiana (version dated 18/11/2015).

  163. Kamiyama E, Nakai D, Mikkaichi T, Okudaira N, Okazaki O. Interaction of angiotensin II type 1 receptor blockers with P-gp substrates in Caco-2 cells and hMDR1-expressing membranes. Life Sci. 2010;86:52–8.

    Article  CAS  PubMed  Google Scholar 

  164. Lægemiddelstyrelsen (Danish Medicines Agency). Summary of Product Characteristics Trandate (version published online 15/6/2015).

  165. Incecayir T, Tsume Y, Amidon GL. Comparison of the permeability of metoprolol and labetalol in rat, mouse, and Caco-2 cells: use as a reference standard for BCS classification. Mol Pharm. 2013;10:958–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Thiel-Demby VE, Humphreys JE, St John Williams LA, Ellens HM, Shah N, Ayrton AD, et al. Biopharmaceutics classification system: validation and learnings of an in vitro permeability assay. Mol Pharm. 2009;6:11–8.

    Article  CAS  PubMed  Google Scholar 

  167. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 203858Orig1s000 lomitapide.

  168. European Medicines Agency. European Public Assessment Report Lojuxta (version dated 18/08/2015).

  169. Soldner A, Benet LZ, Mutschler E, Christians U. Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and caco-2 cell monolayers. Br J Pharmacol. 2000;129:1235–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Belz GG, Doering W, Munkes R, Matthews J. Interaction between digoxin and calcium antagonists and antiarrhythmic drugs. Clin Pharmacol Ther. 1983;33:410–7.

    Article  CAS  PubMed  Google Scholar 

  171. Bachmakov I, Rekersbrink S, Hofmann U, Eichelbaum M, Fromm MF. Characterisation of (R/S)-propafenone and its metabolites as substrates and inhibitors of P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol. 2005;371:195–201.

    Article  CAS  PubMed  Google Scholar 

  172. Jerling M. Clinical pharmacokinetics of ranolazine. Clin Pharmacokinet. 2006;45:469–91.

    Article  CAS  PubMed  Google Scholar 

  173. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 21-256 Ranexa.

  174. European Medicines Agency. Summary of Product Characteristics Adempas (version dated 08/02/2016).

  175. Rickert V, Haefeli WE, Weiss J. Pharmacokinetic interaction profile of riociguat, a new soluble guanylate cyclase stimulator, in vitro. Pulm Pharmacol Ther. 2014;28:130–7.

    Article  CAS  PubMed  Google Scholar 

  176. European Medicines Agency. European Public Assessment Report Xarelto (version dated 09/11/2008).

  177. European Medicines Agency. Summary of Product Characteristics Xarelto (version dated 17/07/2015).

  178. Mueck W, Kubitza D, Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol. 2013;76:455–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Gnoth MJ, Buetehorn U, Muenster U, Schwarz T, Sandmann S. In vitro and in vivo P-glycoprotein transport characteristics of rivaroxaban. J Pharmacol Exp Ther. 2011;338:372–80.

    Article  CAS  PubMed  Google Scholar 

  180. Hochman JH, Pudvah N, Qiu J, Yamazaki M, Tang C, Lin JH, et al. Interactions of human P-glycoprotein with simvastatin, simvastatin acid, and atorvastatin. Pharm Res. 2004;21:1686–91.

    Article  CAS  PubMed  Google Scholar 

  181. Neuvonen PJ, Kantola T, Kivistö KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther. 1998;63:332–41.

    Article  CAS  PubMed  Google Scholar 

  182. Kantola T, Kivistö KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther. 1998;64:177–82.

    Article  CAS  PubMed  Google Scholar 

  183. Westphal K, Weinbrenner A, Zschiesche M, Franke G, Knoke M, Oertel R, et al. Induction of P-glycoprotein by rifampin increases intestinal secretion of talinolol in human beings: a new type of drug/drug interaction. Clin Pharmacol Ther. 2000;68:345–55.

    Article  CAS  PubMed  Google Scholar 

  184. Wetterich U, Spahn-Langguth H, Mutschler E, Terhaag B, Rösch W, Langguth P. Evidence for intestinal secretion as an additional clearance pathway of talinolol enantiomers: concentration- and dose-dependent absorption in vitro and in vivo. Pharm Res. 1996;13:514–22.

    Article  CAS  PubMed  Google Scholar 

  185. Teng R, Butler K. A pharmacokinetic interaction study of ticagrelor and digoxin in healthy volunteers. Eur J Clin Pharmacol. 2013;69:1801–8.

    Article  CAS  PubMed  Google Scholar 

  186. European Medicines Agency. Summary of Product Characteristics Brilique (version dated 11/08/2015).

  187. Teng R, Mitchell P, Butler K. Effect of rifampicin on the pharmacokinetics and pharmacodynamics of ticagrelor in healthy subjects. Eur J Clin Pharmacol. 2013;69:877–83.

    Article  PubMed  Google Scholar 

  188. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 22433 Brilinta.

  189. European Medicines Agency. European Public Assessment Report Samsca (version dated 18/08/2009).

  190. Shoaf SE, Ohzone Y, Ninomiya S, Furukawa M, Bricmont P, Kashiyama E, et al. In vitro P-glycoprotein interactions and steady-state pharmacokinetic interactions between tolvaptan and digoxin in healthy subjects. J Clin Pharmacol. 2011;51:761–9.

    Article  CAS  PubMed  Google Scholar 

  191. Pauli-Magnus C, von Richter O, Burk O, Ziegler A, Mettang T, Eichelbaum M, et al. Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein. J Pharmacol Exp Ther. 2000;293:376–82.

    CAS  PubMed  Google Scholar 

  192. Klein HO, Lang R, Weiss E, Di Segni E, Libhaber C, Guerrero J, et al. The influence of verapamil on serum digoxin concentration. Circulation. 1982;65:998–1003.

    Article  CAS  PubMed  Google Scholar 

  193. Rodin SM, Johnson BF, Wilson J, Ritchie P, Johnson J. Comparative effects of verapamil and isradipine on steady-state digoxin kinetics. Clin Pharmacol Ther. 1988;43:668–72.

    Article  CAS  PubMed  Google Scholar 

  194. Shaik N, Giri N, Pan G, Elmquist WF. P-glycoprotein-mediated active efflux of the anti-HIV1 nucleoside abacavir limits cellular accumulation and brain distribution. Drug Metab Dispos. 2007;35:2076–85.

    Article  CAS  PubMed  Google Scholar 

  195. European Medicines Agency. European Public Assessment Report Triumeq (version dated 15/10/2014).

  196. Hughes J, Crowe A. Inhibition of P-glycoprotein-mediated efflux of digoxin and its metabolites by macrolide antibiotics. J Pharmacol Sci. 2010;113:315–24.

    Article  CAS  PubMed  Google Scholar 

  197. Eberl S, Renner B, Neubert A, Reisig M, Bachmakov I, König J, et al. Role of p-glycoprotein inhibition for drug interactions: evidence from in vitro and pharmacoepidemiological studies. Clin Pharmacokinet. 2007;46:1039–49.

    Article  CAS  PubMed  Google Scholar 

  198. Bouquié R, Deslandes G, Renaud C, Dailly E, Haloun A, Jolliet P. Colchicine-induced rhabdomyolysis in a heart/lung transplant patient with concurrent use of cyclosporin, pravastatin, and azithromycin. J Clin Rheumatol. 2011;17:28–30.

    Article  PubMed  Google Scholar 

  199. Rengelshausen J, Göggelmann C, Burhenne J, Riedel K-D, Ludwig J, Weiss J, et al. Contribution of increased oral bioavailability and reduced nonglomerular renal clearance of digoxin to the digoxin-clarithromycin interaction. Br J Clin Pharmacol. 2003;56:32–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. European Medicines Agency. Summary of Product Characteristics Daklinza (version dated 05/11/2015).

  201. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 206843Orig1s000 Daklinza.

  202. European Medicines Agency. Summary of Product Characteristics Triumeq (version dated 09/11/2015).

  203. Kurnik D, Wood AJJ, Wilkinson GR. The erythromycin breath test reflects P-glycoprotein function independently of cytochrome P450 3A activity. Clin Pharmacol Ther. 2006;80:228–34.

    Article  CAS  PubMed  Google Scholar 

  204. Schuetz EG, Yasuda K, Arimori K, Schuetz JD. Human MDR1 and mouse mdr1a P-glycoprotein alter the cellular retention and disposition of erythromycin, but not of retinoic acid or benzo(a)pyrene. Arch Biochem Biophys. 1998;350:340–7.

    Article  CAS  PubMed  Google Scholar 

  205. European Medicines Agency. Summary of Product Characteristics Telzir (version dated 12/01/2016).

  206. European Medicines Agency. Scientific discussion Telzir (version dated 05/12/2005).

  207. Polli JW, Jarrett JL, Studenberg SD, Humphreys JE, Dennis SW, Brouwer KR, et al. Role of P-glycoprotein on the CNS disposition of amprenavir (141W94), an HIV protease inhibitor. Pharm Res. 1999;16:1206–12.

    Article  CAS  PubMed  Google Scholar 

  208. U.S. Food and Drug Administration. Label Crixivan, capsules (action date 27/03/2015).

  209. Rouquayrol M, Gaucher B, Roche D, Greiner J, Vierling P. Transepithelial transport of prodrugs of the HIV protease inhibitors saquinavir, indinavir, and nelfinavir across Caco-2 cell monolayers. Pharm Res. 2002;19:1704–12.

    Article  CAS  PubMed  Google Scholar 

  210. Jalava KM, Partanen J, Neuvonen PJ. Itraconazole decreases renal clearance of digoxin. Ther Drug Monit. 1997;19:609–13.

    Article  CAS  PubMed  Google Scholar 

  211. Lægemiddelstyrelsen (Danish Medicines Agency). Summary of Product Characteristics Itraconazol “Ratiopharm” (version published online 02/11/2015).

  212. Wang E, Lew K, Casciano CN, Clement RP, Johnson WW. Interaction of common azole antifungals with P glycoprotein. Antimicrob Agents Chemother. 2002;46:160–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Griffin J, Fletcher N, Clemence R, Blanchflower S, Brayden DJ. Selamectin is a potent substrate and inhibitor of human and canine P-glycoprotein. J Vet Pharmacol Ther. 2005;28:257–65.

    Article  CAS  PubMed  Google Scholar 

  214. Schinkel AH, Wagenaar E, Mol CA, van Deemter L. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest. 1996;97:2517–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. U.S. Food and Drug Administration. Label Stromectol, tablets (action date 15/12/2009).

  216. Profit L, Eagling VA, Back DJ. Modulation of P-glycoprotein function in human lymphocytes and Caco-2 cell monolayers by HIV-1 protease inhibitors. AIDS. 1999;13:1623–7.

    Article  CAS  PubMed  Google Scholar 

  217. Davit B, Reynolds K, Yuan R, Ajayi F, Conner D, Fadiran E, et al. FDA evaluations using in vitro metabolism to predict and interpret in vivo metabolic drug–drug interactions: impact on labeling. J Clin Pharmacol. 1999;39:899–910.

    Article  CAS  PubMed  Google Scholar 

  218. Simpson K, Jarvis B. Fexofenadine: a review of its use in the management of seasonal allergic rhinitis and chronic idiopathic urticaria. Drugs. 2000;59:301–21.

    Article  CAS  PubMed  Google Scholar 

  219. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 205834 Harvoni.

  220. European Medicines Agency. Summary of Product Characteristics Harvoni (version dated 23/02/2016).

  221. Ito T, Yano I, Tanaka K, Inui KI. Transport of quinolone antibacterial drugs by human P-glycoprotein expressed in a kidney epithelial cell line, LLC-PK1. J Pharmacol Exp Ther. 1997;282:955–60.

    CAS  PubMed  Google Scholar 

  222. Lægemiddelstyrelsen (Danish Medicines Agency). Summary of Product Characteristics Levofloxacin “Amneal” (version published online 02/03/2015).

  223. Vishnuvardhan D, Moltke LL, Richert C, Greenblatt DJ. Lopinavir: acute exposure inhibits P-glycoprotein; extended exposure induces P-glycoprotein. AIDS. 2003;17:1092–4.

    Article  PubMed  Google Scholar 

  224. van Heeswijk RPG, Bourbeau M, Campbell P, Seguin I, Chauhan BM, Foster BC, et al. Time-dependent interaction between lopinavir/ritonavir and fexofenadine. J Clin Pharmacol. 2006;46:758–67.

    Article  PubMed  CAS  Google Scholar 

  225. European Medicines Agency. Summary of Product Characteristics Kaletra (version dated 01/04/2016).

  226. European Medicines Agency. Summary of Product Characteristics Celsentri (version dated 08/01/2016).

  227. European Medicines Agency. European Public Assessment Report–scientific discussion Celsentri (version dated 18/12/2007).

  228. Lægemiddelstyrelsen (Danish Medicines Agency). Summary of Product Characteristics Lariam (version published online 19/12/2014).

  229. Pham YT, Régina A, Farinotti R, Couraud P, Wainer IW, Roux F, et al. Interactions of racemic mefloquine and its enantiomers with P-glycoprotein in an immortalised rat brain capillary endothelial cell line, GPNT. Biochim Biophys Acta. 2000;1524:212–9.

    Article  CAS  PubMed  Google Scholar 

  230. Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, Unadkat JD. Complex drug interactions of the HIV protease inhibitors 3: effect of simultaneous or staggered dosing of digoxin and ritonavir, nelfinavir, rifampin, or bupropion. Drug Metab Dispos. 2012;40:610–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Kim RB, Fromm MF, Wandel C, Leake B, Wood AJ, Roden DM, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest. 1998;101:289–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. U.S. Food and Drug Administration. Label Viracept, tablets for oral use and powder for oral use (action date 27/03/2015).

  233. European Medicines Agency. Summary of Product Characteristics Viracept (version dated 10/06/2014).

  234. European Medicines Agency. European Public Assessment Report Farydak (version dated 11/09/2015).

  235. European Medicines Agency. Summary of Product Characteristics Farydak (version dated 11/09/2015).

  236. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 206619Orig1s000 Viekirax Pak.

  237. European Medicines Agency. Summary of Product Characteristics Viekirax (version dated 30/11/2015).

  238. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) 203469Orig1s000 Iclusig.

  239. European Medicines Agency. Summary of Product Characteristics Iclusig (version dated 11/01/2016).

  240. Reitman ML, Chu X, Cai X, Yabut J, Venkatasubramanian R, Zajic S, et al. Rifampin’s acute inhibitory and chronic inductive drug interactions: experimental and model-based approaches to drug–drug interaction trial design. Clin Pharmacol Ther. 2011;89:234–42.

    Article  CAS  PubMed  Google Scholar 

  241. Hamman MA, Bruce MA, Haehner-Daniels BD, Hall SD. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther. 2001;69:114–21.

    Article  CAS  PubMed  Google Scholar 

  242. European Medicines Agency. Summary of Product Characteristics Norvir (version dated 23/11/2015).

  243. Ding R, Tayrouz Y, Riedel K-D, Burhenne J, Weiss J, Mikus G, et al. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther. 2004;76:73–84.

    Article  CAS  PubMed  Google Scholar 

  244. Alsenz J, Steffen H, Alex R. Active apical secretory efflux of the HIV protease inhibitors saquinavir and ritonavir in Caco-2 cell monolayers. Pharm Res. 1998;15:423–8.

    Article  CAS  PubMed  Google Scholar 

  245. Khaliq Y, Gallicano K, Venance S, Kravcik S, Cameron DW. Effect of ketoconazole on ritonavir and saquinavir concentrations in plasma and cerebrospinal fluid from patients infected with human immunodeficiency virus. Clin Pharmacol Ther. 2000;68:637–46.

    Article  CAS  PubMed  Google Scholar 

  246. Corallo CE, Rogers IR. Roxithromycin-induced digoxin toxicity. Med J Aust. 1996;165:433–4.

    CAS  PubMed  Google Scholar 

  247. European Medicines Agency. Summary of Product Characteristics Invirase (version dated 24/02/2016).

  248. Smalley J, Marino AM, Xin B, Olah T, Balimane PV. Development of a quantitative LC-MS/MS analytical method coupled with turbulent flow chromatography for digoxin for the in vitro P-gp inhibition assay. J Chromatogr B Analyt Technol Biomed Life Sci. 2007;854:260–7.

    Article  CAS  PubMed  Google Scholar 

  249. European Medicines Agency. European Public Assessment Report Olysio (version dated 04/06/2014).

  250. European Medicines Agency. Summary of Product Characteristics Olysio (version dated 25/09/2015).

  251. U.S. Food and Drug Administration. Label Zagam, tablets (action date 4/04/2003).

  252. de Lange EC, Marchand S, van den Berg D, van der Sandt IC, de Boer AG, Delon A, et al. In vitro and in vivo investigations on fluoroquinolones; effects of the P-glycoprotein efflux transporter on brain distribution of sparfloxacin. Eur J Pharm Sci. 2000;12:85–93.

    Article  PubMed  Google Scholar 

  253. Cormet-Boyaka E, Huneau JF, Mordrelle A, Boyaka PN, Carbon C, Rubinstein E, et al. Secretion of sparfloxacin from the human intestinal Caco-2 cell line is altered by P-glycoprotein inhibitors. Antimicrob Agents Chemother. 1998;42:2607–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  254. European Medicines Agency. Summary of Product Characteristics Aptivus (version dated 10/12/2015).

  255. Giessmann T, May K, Modess C, Wegner D, Hecker U, Zschiesche M, et al. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin Pharmacol Ther. 2004;76:192–200.

    Article  CAS  PubMed  Google Scholar 

  256. Akamine Y, Miura M, Yasui-Furukori N, Kojima M, Uno T. Carbamazepine differentially affects the pharmacokinetics of fexofenadine enantiomers. Br J Clin Pharmacol. 2012;73:478–81.

    Article  CAS  PubMed  Google Scholar 

  257. Yamada S, Yasui-Furukori N, Akamine Y, Kaneko S, Uno T. Effects of the P-glycoprotein inducer carbamazepine on fexofenadine pharmacokinetics. Ther Drug Monit. 2009;31:764–8.

    CAS  PubMed  Google Scholar 

  258. Zhang C, Zuo Z, Kwan P, Baum L. In vitro transport profile of carbamazepine, oxcarbazepine, eslicarbazepine acetate, and their active metabolites by human P-glycoprotein. Epilepsia. 2011;52:1894–904.

    Article  CAS  PubMed  Google Scholar 

  259. El Ela AA, Härtter S, Schmitt U, Hiemke C, Spahn-Langguth H, Langguth P. Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds–implications for pharmacokinetics of selected substrates. J Pharm Pharmacol. 2004;56:967–75.

    Article  PubMed  CAS  Google Scholar 

  260. Saruwatari J, Yasui-Furukori N, Niioka T, Akamine Y, Takashima A, Kaneko S, et al. Different effects of the selective serotonin reuptake inhibitors fluvoxamine, paroxetine, and sertraline on the pharmacokinetics of fexofenadine in healthy volunteers. J Clin Psychopharmacol. 2012;32:195–9.

    Article  CAS  PubMed  Google Scholar 

  261. Weiss J, Dormann S-MG, Martin-Facklam M, Kerpen CJ, Ketabi-Kiyanvash N, Haefeli WE. Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003;305:197–204.

    Article  CAS  PubMed  Google Scholar 

  262. Iwaki K, Sakaeda T, Kakumoto M, Nakamura T, Komoto C, Okamura N, et al. Haloperidol is an inhibitor but not substrate for MDR1/P-glycoprotein. J Pharm Pharmacol. 2006;58:1617–22.

    Article  CAS  PubMed  Google Scholar 

  263. Yasui-Furukori N, Saito M, Niioka T, Inoue Y, Sato Y, Kaneko S. Effect of itraconazole on pharmacokinetics of paroxetine: the role of gut transporters. Ther Drug Monit. 2007;29:45–8.

    Article  CAS  PubMed  Google Scholar 

  264. Rameis H. The importance of prospective planning of pharmacokinetic trials. Considerations of studies on the phenytoin–digoxin-(P–D) and phenytoin–digitoxin-(P–DT) interaction. Int J Clin Pharmacol Ther Toxicol. 1992;30:528–9.

    CAS  PubMed  Google Scholar 

  265. Collett A, Higgs NB, Sims E, Rowland M, Warhurst G. Modulation of the permeability of H2 receptor antagonists cimetidine and ranitidine by P-glycoprotein in rat intestine and the human colonic cell line Caco-2. J Pharmacol Exp Ther. 1999;288:171–8.

    CAS  PubMed  Google Scholar 

  266. Lægemiddelstyrelsen (Danish Medicines Agency). Summary of Product Characteristics Domperidon “Alternova” (version published online 14/12/2015).

  267. Yoshizato T, Kotegawa T, Imai H, Tsutsumi K, Imanaga J, Ohyama T, et al. Itraconazole and domperidone: a placebo-controlled drug interaction study. Eur J Clin Pharmacol. 2012;68:1287–94.

    Article  CAS  PubMed  Google Scholar 

  268. Faassen F, Vogel G, Spanings H, Vromans H. Caco-2 permeability, P-glycoprotein transport ratios and brain penetration of heterocyclic drugs. Int J Pharm. 2003;263:113–22.

    Article  CAS  PubMed  Google Scholar 

  269. Pauli-Magnus C, Rekersbrink S, Klotz U, Fromm MF. Interaction of omeprazole, lansoprazole and pantoprazole with P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol. 2001;364:551–7.

    Article  CAS  PubMed  Google Scholar 

  270. Lægemiddelstyrelsen (Danish Medicines Agency). Summary of Product Characteristics Lansoprazol “Stada” (version published online 11/01/2016).

  271. Wandel C, Kim R, Wood M, Wood A. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology. 2002;96:913–20.

    Article  CAS  PubMed  Google Scholar 

  272. Zhou Y, Sridhar R, Shan L, Sha W, Gu X, Sukumar S. Loperamide, an FDA-approved antidiarrhea drug, effectively reverses the resistance of multidrug resistant MCF-7/MDR1 human breast cancer cells to doxorubicin-induced cytotoxicity. Cancer Invest. 2012;30:119–25.

    Article  CAS  PubMed  Google Scholar 

  273. Crowe A, Wong P. Potential roles of P-gp and calcium channels in loperamide and diphenoxylate transport. Toxicol Appl Pharmacol. 2003;193:127–37.

    Article  CAS  PubMed  Google Scholar 

  274. Kim T-E, Lee H, Lim KS, Lee S, Yoon S-H, Park K-M, et al. Effects of HM30181, a P-glycoprotein inhibitor, on the pharmacokinetics and pharmacodynamics of loperamide in healthy volunteers. Br J Clin Pharmacol. 2014;78:556–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Vandenbossche J, Huisman M, Xu Y, Sanderson-Bongiovanni D, Soons P. Loperamide and P-glycoprotein inhibition: assessment of the clinical relevance. J Pharm Pharmacol. 2010;62:401–12.

    Article  CAS  PubMed  Google Scholar 

  276. Sadeque AJ, Wandel C, He H, Shah S, Wood AJ. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther. 2000;68:231–7.

    Article  CAS  PubMed  Google Scholar 

  277. European Medicines Agency. European Public Assessment Report Moventig (version dated 17/12/2014).

  278. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 204760 Movantik.

  279. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 204042Orig1s000 Invokana.

  280. European Medicines Agency. Summary of Product Characteristics Vokanamet (version dated 29/01/2016).

  281. European Medicines Agency. European Public Assessment Report Cerdelga (version dated 13/02/2015).

  282. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 205494 Cerdelga.

  283. Niemi M, Backman JT, Neuvonen M, Neuvonen PJ, Kivistö KT. Effects of rifampin on the pharmacokinetics and pharmacodynamics of glyburide and glipizide. Clin Pharmacol Ther. 2001;69:400–6.

    Article  CAS  PubMed  Google Scholar 

  284. Golstein PE, Boom A, van Geffel J, Jacobs P, Masereel B, Beauwens R. P-glycoprotein inhibition by glibenclamide and related compounds. Pflugers Arch. 1999;437:652–60.

    Article  CAS  PubMed  Google Scholar 

  285. Lilja JJ, Niemi M, Fredrikson H, Neuvonen PJ. Effects of clarithromycin and grapefruit juice on the pharmacokinetics of glibenclamide. Br J Clin Pharmacol. 2007;63:732–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. European Medicines Agency. European Public Assessment Report Onglyza (version dated 29/03/2011).

  287. European Medicines Agency. Summary of Product Characteristics Onglyza (version dated 23/11/2015).

  288. Lægemiddelstyrelsen (Danish Medicines Agency). Summary of Product Characteristics Revitelle (version published online 04/01/2016).

  289. Church MK. Safety and efficacy of bilastine: a new H(1)-antihistamine for the treatment of allergic rhinoconjunctivitis and urticaria. Expert Opin Drug Saf. 2011;10:779–93.

    Article  CAS  PubMed  Google Scholar 

  290. Crowe A, Wright C. The impact of P-glycoprotein mediated efflux on absorption of 11 sedating and less-sedating antihistamines using Caco-2 monolayers. Xenobiotica. 2012;42:538–49.

    Article  CAS  PubMed  Google Scholar 

  291. Polli JW, Baughman TM, Humphreys JE, Jordan KH, Mote AL, Salisbury JA, et al. P-glycoprotein influences the brain concentrations of cetirizine (Zyrtec), a second-generation non-sedating antihistamine. J Pharm Sci. 2003;92:2082–9.

    Article  CAS  PubMed  Google Scholar 

  292. Conen S, Theunissen EL, Vermeeren A, van Ruitenbeek P, Stiers P, Mehta MA, et al. The role of P-glycoprotein in CNS antihistamine effects. Psychopharmacology. 2013;229:9–19.

    Article  CAS  PubMed  Google Scholar 

  293. Desrayaud S, Guntz P, Scherrmann JM, Lemaire M. Effect of the P-glycoprotein inhibitor, SDZ PSC 833, on the blood and brain pharmacokinetics of colchicine. Life Sci. 1997;61:153–63.

    Article  CAS  PubMed  Google Scholar 

  294. Tröger U, Lins H, Scherrmann J-M, Wallesch C-W, Bode-Böger SM. Tetraparesis associated with colchicine is probably due to inhibition by verapamil of the P-glycoprotein efflux pump in the blood-brain barrier. BMJ. 2005;331:613.

    Article  PubMed  PubMed Central  Google Scholar 

  295. Eleftheriou G, Bacis G, Fiocchi R, Sebastiano R. Colchicine-induced toxicity in a heart transplant patient with chronic renal failure. Clin Toxicol. 2008;46:827–30.

    Article  CAS  Google Scholar 

  296. Dahan A, Sabit H, Amidon GL. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine. Drug Metab Dispos. 2009;37:2028–36.

    Article  CAS  PubMed  Google Scholar 

  297. Cvetkovic M, Leake B, Fromm MF, Wilkinson GR, Kim RB. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27:866–71.

    CAS  PubMed  Google Scholar 

  298. European Medicines Agency. European Public Assessment Report Betmiga (version dated 15/01/2013).

  299. Takusagawa S, Ushigome F, Nemoto H, Takahashi Y, Li Q, Kerbusch V, et al. Intestinal absorption mechanism of mirabegron, a potent and selective β3-adrenoceptor agonist: involvement of human efflux and/or influx transport systems. Mol Pharm. 2013;10:1783–94.

    Article  CAS  PubMed  Google Scholar 

  300. Kharasch ED, Hoffer C, Whittington D, Sheffels P. Role of P-glycoprotein in the intestinal absorption and clinical effects of morphine. Clin Pharmacol Ther. 2003;74:543–54.

    Article  CAS  PubMed  Google Scholar 

  301. Fromm MF, Eckhardt K, Li S, Schänzle G, Hofmann U, Mikus G, et al. Loss of analgesic effect of morphine due to coadministration of rifampin. Pain. 1997;72:261–7.

    Article  CAS  PubMed  Google Scholar 

  302. Heiskanen T, Backman JT, Neuvonen M, Kontinen VK, Neuvonen PJ, Kalso E. Itraconazole, a potent inhibitor of P-glycoprotein, moderately increases plasma concentrations of oral morphine. Acta Anaesthesiol Scand. 2008;52:1319–26.

    Article  CAS  PubMed  Google Scholar 

  303. Skarke C, Jarrar M, Erb K, Schmidt H, Geisslinger G, Lötsch J. Respiratory and miotic effects of morphine in healthy volunteers when P-glycoprotein is blocked by quinidine. Clin Pharmacol Ther. 2003;74:303–11.

    Article  CAS  PubMed  Google Scholar 

  304. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest. 1995;96:1698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Crowe A. The influence of P-glycoprotein on morphine transport in Caco-2 cells. Comparison with paclitaxel. Eur J Pharmacol. 2002;440:7–16.

    Article  CAS  PubMed  Google Scholar 

  306. European Medicines Agency. Summary of Product Characteristics Vargatef (version dated 27/05/2015).

  307. U.S. Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review(s) NDA 205832 Ofev.

  308. Machavaram KK, Gundu J, Yamsani MR. Effect of ketoconazole and rifampicin on the pharmacokinetics of ranitidine in healthy human volunteers: a possible role of P-glycoprotein. Drug Metabol Drug Interact. 2006;22:47–65.

    Article  CAS  PubMed  Google Scholar 

  309. Bourdet DL, Pollack GM, Thakker DR. Intestinal absorptive transport of the hydrophilic cation ranitidine: a kinetic modeling approach to elucidate the role of uptake and efflux transporters and paracellular vs. transcellular transport in Caco-2 cells. Pharm Res. 2006;23:1178–87.

    Article  CAS  PubMed  Google Scholar 

  310. Bourdet DL, Thakker DR. Saturable absorptive transport of the hydrophilic organic cation ranitidine in Caco-2 cells: role of pH-dependent organic cation uptake system and P-glycoprotein. Pharm Res. 2006;23:1165–77.

    Article  CAS  PubMed  Google Scholar 

  311. Schwarz UI, Hanso H, Oertel R, Miehlke S, Kuhlisch E, Glaeser H, et al. Induction of intestinal P-glycoprotein by St John’s wort reduces the oral bioavailability of talinolol. Clin Pharmacol Ther. 2007;81:669–78.

    Article  CAS  PubMed  Google Scholar 

  312. Mueller SC, Uehleke B, Woehling H, Petzsch M, Majcher-Peszynska J, Hehl E-M, et al. Effect of St John’s wort dose and preparations on the pharmacokinetics of digoxin. Clin Pharmacol Ther. 2004;75:546–57.

    Article  CAS  PubMed  Google Scholar 

  313. Tian R, Koyabu N, Morimoto S, Shoyama Y, Ohtani H, Sawada Y. Functional induction and de-induction of P-glycoprotein by St. John’s wort and its ingredients in a human colon adenocarcinoma cell line. Drug Metab Dispos. 2005;33:547–54.

    Article  CAS  PubMed  Google Scholar 

  314. Lægemiddelstyrelsen (Danish Medicines Agency). Summary of Product Characteristics Kinin “DAK” (version published online 08/02/2016).

  315. Aronson JK, Carver JG. Interaction of digoxin with quinine. Lancet. 1981;1:1418.

    Article  CAS  PubMed  Google Scholar 

  316. Hedman A, Angelin B, Arvidsson A, Dahlqvist R, Nilsson B. Interactions in the renal and biliary elimination of digoxin: stereoselective difference between quinine and quinidine. Clin Pharmacol Ther. 1990;47:20–6.

    Article  CAS  PubMed  Google Scholar 

  317. Hsiao P, Bui T, Ho RJY, Unadkat JD. In vitro-to-in vivo prediction of P-glycoprotein-based drug interactions at the human and rodent blood-brain barrier. Drug Metab Dispos. 2008;36:481–4.

    Article  CAS  PubMed  Google Scholar 

  318. Hu Y, Sieck DE, Hsu WH. Why are second-generation H1-antihistamines minimally sedating? Eur J Pharmacol. 2015;765:100–6.

    Article  CAS  PubMed  Google Scholar 

  319. Bagal S, Bungay P. Restricting CNS penetration of drugs to minimise adverse events: role of drug transporters. Drug Discov Today Technol. 2014;12:e79–85.

    Article  PubMed  Google Scholar 

  320. Sundhedsstyrelsen (Danish Health and Medicines Authority). Summary of Product Characteristics Imodium “McNeil” (version published online 04/27/15).

  321. Kreisl WC, Liow J-S, Kimura N, Seneca N, Zoghbi SS, Morse CL, et al. P-glycoprotein function at the blood-brain barrier in humans can be quantified with the substrate radiotracer 11C-N-desmethyl-loperamide. J Nucl Med. 2010;51:559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Eggleston W, Clark KH, Marraffa JM. Loperamide abuse associated with cardiac dysrhythmia and death. Ann Emerg Med. 2016. doi:10.1016/j.annemergmed.2016.03.047.

    PubMed  Google Scholar 

  323. Shi JG, Zhang Y, Yeleswaram S. The relevance of assessment of intestinal P-gp inhibition using digoxin as an in vivo probe substrate. Nat Rev Drug Discov. 2011;10:75.

    Article  CAS  PubMed  Google Scholar 

  324. Kharasch ED, Bedynek PS, Walker A, Whittington D, Hoffer C. Mechanism of ritonavir changes in methadone pharmacokinetics and pharmacodynamics: II. Ritonavir effects on CYP3A and P-glycoprotein activities. Clin Pharmacol Ther. 2008;84:506–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Tolle-Sander S, Rautio J, Wring S, Polli JW, Polli JE. Midazolam exhibits characteristics of a highly permeable P-glycoprotein substrate. Pharm Res. 2003;20:757–64.

    Article  CAS  PubMed  Google Scholar 

  326. European Medicines Agency. Summary of Product Characteristics Exviera (version dated 10/02/2016).

  327. Mallet L, Spinewine A, Huang A. The challenge of managing drug interactions in elderly people. Lancet. 2007;370:185–91.

    Article  CAS  PubMed  Google Scholar 

  328. Ince I, Knibbe CAJ, Danhof M, de Wildt SN. Developmental changes in the expression and function of cytochrome P450 3A isoforms: evidence from in vitro and in vivo investigations. Clin Pharmacokinet. 2013;52:333–45.

    Article  CAS  PubMed  Google Scholar 

  329. Lacroix D, Sonnier M, Moncion A, Cheron G, Cresteil T. Expression of CYP3A in the human liver–evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997;247:625–34.

    Article  CAS  PubMed  Google Scholar 

  330. Fanni D, Ambu R, Gerosa C, Nemolato S, Castagnola M, Van Eyken P, et al. Cytochrome P450 genetic polymorphism in neonatal drug metabolism: role and practical consequences towards a new drug culture in neonatology. Int J Immunopathol Pharmacol. 2014;27:5–13.

    Article  CAS  PubMed  Google Scholar 

  331. Hines RN. Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol. 2007;21:169–75.

    Article  CAS  PubMed  Google Scholar 

  332. Mathias AA, Hitti J, Unadkat JD. P-glycoprotein and breast cancer resistance protein expression in human placentae of various gestational ages. Am J Physiol Regul Integr Comp Physiol. 2005;289:R963–9.

    Article  CAS  PubMed  Google Scholar 

  333. Sun M, Kingdom J, Baczyk D, Lye SJ, Matthews SG, Gibb W. Expression of the multidrug resistance P-glycoprotein, (ABCB1 glycoprotein) in the human placenta decreases with advancing gestation. Placenta. 2006;27:602–9.

    Article  CAS  PubMed  Google Scholar 

  334. Daood M, Tsai C, Ahdab-Barmada M, Watchko JF. ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics. 2008;39:211–8.

    Article  CAS  PubMed  Google Scholar 

  335. Virgintino D, Errede M, Girolamo F, Capobianco C, Robertson D, Vimercati A, et al. Fetal blood-brain barrier P-glycoprotein contributes to brain protection during human development. J Neuropathol Exp Neurol. 2008;67:50–61.

    Article  CAS  PubMed  Google Scholar 

  336. Lam J, Koren G. P-glycoprotein in the developing human brain: a review of the effects of ontogeny on the safety of opioids in neonates. Ther Drug Monit. 2014;36:699–705.

    Article  CAS  PubMed  Google Scholar 

  337. Artursson P, Matsson P, Karlgren M. In vitro characterization of interactions with drug transporting proteins. In: Sugiyama Y, Steffansen B, editors. Transporters in drug development, AAPS advances in the pharmaceutical sciences series 7. New York: Springer Science + Business Media; 2013.

    Google Scholar 

  338. Ahlin G, Hilgendorf C, Karlsson J, Szigyarto CA-K, Uhlen M, Artursson P. endogenous gene and protein expression of drug-transporting proteins in cell lines routinely used in drug discovery programs. Drug Metab Dispos. 2009;37:2275–83.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Lund.

Ethics declarations

Funding

This study received no specific funding.

Conflict of interest

Drs Lund, Petersen and Dalhoff have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lund, M., Petersen, T.S. & Dalhoff, K.P. Clinical Implications of P-Glycoprotein Modulation in Drug–Drug Interactions. Drugs 77, 859–883 (2017). https://doi.org/10.1007/s40265-017-0729-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-017-0729-x

Keywords

Navigation