Skip to main content
Log in

Postmarketing Safety Surveillance

Where does Signal Detection Using Electronic Healthcare Records Fit into the Big Picture?

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

The safety profile of a drug evolves over its lifetime on the market; there are bound to be changes in the circumstances of a drug’s clinical use which may give rise to previously unobserved adverse effects, hence necessitating surveillance postmarketing. Postmarketing surveillance has traditionally been carried out by systematic manual review of spontaneous reports of adverse drug reactions. Vast improvements in computing capabilities have provided opportunities to automate signal detection, and several worldwide initiatives are exploring new approaches to facilitate earlier detection, primarily through mining of routinely-collected data from electronic healthcare records (EHR). This paper provides an overview of ongoing initiatives exploring data from EHR for signal detection vis-à-vis established spontaneous reporting systems (SRS). We describe the role SRS has played in regulatory decision making with respect to safety issues, and evaluate the potential added value of EHR-based signal detection systems to the current practice of drug surveillance. Safety signal detection is both an iterative and dynamic process. It is in the best interest of public health to integrate and understand evidence from all possibly relevant information sources on drug safety. Proper evaluation and communication of potential signals identified remains an imperative and should accompany any signal detection activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zarin DA, Young JL, West JC. Challenges to evidence-based medicine: a comparison of patients and treatments in randomized controlled trials with patients and treatments in a practice research network. Soc Psychiatry Psychiatr Epidemiol. 2005;40(1):27–35.

    Article  PubMed  Google Scholar 

  2. Heiat A, Gross CP, Krumholz HM. Representation of the elderly, women, and minorities in heart failure clinical trials. Arch Intern Med. 2002;162(15):1682–8.

    Article  PubMed  Google Scholar 

  3. Black N. Why we need observational studies to evaluate the effectiveness of health care. BMJ. 1996;312(7040):1215–8.

    Article  PubMed  CAS  Google Scholar 

  4. Papanikolaou PN, Christidi GD, Ioannidis JP. Comparison of evidence on harms of medical interventions in randomized and nonrandomized studies. CMAJ. 2006;174(5):635–41.

    PubMed  Google Scholar 

  5. US FDA. FDA issues public health warning on phenylpropanolamine. Available from URL: http://www.fda.gov/Drugs/DrugSafety/InformationbyDrugClass/ucm150763.htm. Accessed 9 Jan 2013.

  6. US FDA. FDA requires additional labeling for over-the-counter pain relievers and fever reducers to help consumers use products safely. Available from URL: http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/2009/ucm149573.htm. Accessed 9 Jan 2013.

  7. Cantu C, Arauz A, Murillo-Bonilla LM, et al. Stroke associated with sympathomimetics contained in over-the-counter cough and cold drugs. Stroke. 2003;34(7):1667–72.

    Article  PubMed  CAS  Google Scholar 

  8. McGettigan P, Henry D. Cardiovascular risk with non-steroidal anti-inflammatory drugs: systematic review of population-based controlled observational studies. PLoS Med. 2011;8(9):e1001098.

    Article  PubMed  CAS  Google Scholar 

  9. DuMouchel W. Bayesian data mining in large frequency tables, with an application to the FDA Spontaneous Reporting System. Am Stat. 1999;53:177–202.

    Google Scholar 

  10. Almenoff JS, DuMouchel W, Kindman LA, et al. Disproportionality analysis using empirical Bayes data mining: a tool for the evaluation of drug interactions in the post-marketing setting. Pharmacoepidemiol Drug Saf. 2003;12(6):517–21.

    Article  PubMed  Google Scholar 

  11. Hauben M, Zhou X. Quantitative methods in pharmacovigilance: focus on signal detection. Drug Saf. 2003;26(3):159–86.

    Article  PubMed  Google Scholar 

  12. Bousquet C, Henegar C, Louet AL, et al. Implementation of automated signal generation in pharmacovigilance using a knowledge-based approach. Int J Med Inform. 2005;74(7–8):563–71.

    Article  PubMed  Google Scholar 

  13. Bate A, Edwards IR. Data mining techniques in pharmacovigilance. In: Hartzema AG, Tilson HH, Chan KA, editors. Pharmacoepidemiology and therapeutic risk management. Cincinnati: Harvey Whitney; 2008.

  14. Coulter D. Signal generation in the New Zealand Intensive Medicines Monitoring Programme: a combined clinical and statistical approach. Drug Saf. 2002;25(6):433–9.

    Article  PubMed  CAS  Google Scholar 

  15. Heeley E, Wilton LV, Shakir SA. Automated signal generation in prescription-event monitoring. Drug Saf. 2002;25(6):423–32.

    Article  PubMed  Google Scholar 

  16. Platt R, Wilson M, Chan KA, et al. The new Sentinel Network: improving the evidence of medical-product safety. N Engl J Med. 2009;361(7):645–7.

    Article  PubMed  CAS  Google Scholar 

  17. Coloma PM, Schuemie MJ, Trifiro G, et al. Combining electronic healthcare databases in Europe to allow for large-scale drug safety monitoring: the EU-ADR Project. Pharmacoepidemiol Drug Saf. 2011;20(1):1–11.

    Article  PubMed  Google Scholar 

  18. World Health Organization. Safety of medicines: a guide to detecting and reporting adverse drug reactions 2002. Available from URL: http://whqlibdoc.who.int/hq/2002/WHO_EDM_QSM_2002.2.pdf Accessed 10 Jul 2011.

  19. Report of CIOMS Working Group VIII. Practical aspects of signal detection in pharmacovigilance. Geneva: WHO; 2010.

    Google Scholar 

  20. Hauben M, Aronson JK. Defining ‘signal’ and its subtypes in pharmacovigilance based on a systematic review of previous definitions. Drug Saf. 2009;32(2):99–110.

    Article  PubMed  Google Scholar 

  21. US FDA. FDA Adverse Event Reporting System (AERS). Available from URL: http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/default.htm. Accessed 2013 Jan 9.

  22. Vaccine Adverse Event Reporting System. Available from URL: http://vaers.hhs.gov/index/about/index. Accessed 2013 Jan 9.

  23. European Medicines Agency. EudraVigilance. Available from URL: http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/document_listing/document_listing_000239.jsp&mid=WC0b01ac05800250b5. Accessed 9 Jan 2013.

  24. European Medicines Agency. 2009 EudraVigilance-human status report. Available from URL: http://www.ema.europa.eu/docs/en_GB/document_library/Report/2010/10/WC500097692.pdf. Accessed 9 Jan 2013.

  25. The Uppsala Monitoring Centre. The WHO programme. Available from URL: http://www.who-umc.org/DynPage.aspx?id=98078&mn1=7347&mn2=7252&mn3=7322. Accessed 20 Apr 2012.

  26. Uppsala Monitoring Centre. Uppsala reports, 2012 April. Available from URL: http://www.who-umc.org/graphics/26656.pdf. Accessed 29 May 2012.

  27. Piccinni C, Sacripanti C, Poluzzi E, et al. Stronger association of drug-induced progressive multifocal leukoencephalopathy (PML) with biological immunomodulating agents. Eur J Clin Pharmacol. 2010;66(2):199–206.

    Article  PubMed  CAS  Google Scholar 

  28. Koutkias V, Niès J, Jensen S, et al., editors. Patient safety informatics: adverse drug events, human factors, and IT tools for patient medication safety, vol. 166. Studies in health technology and informatics. IOS Press; 2011.

  29. Szarfman A, Tonning JM, Doraiswamy PM. Pharmacovigilance in the 21st century: new systematic tools for an old problem. Pharmacotherapy. 2004;24(9):1099–104.

    Article  PubMed  Google Scholar 

  30. Hauben M, Madigan D, Gerrits CM, et al. The role of data mining in pharmacovigilance. Expert Opin Drug Saf. 2005;4(5):929–48.

    Article  PubMed  CAS  Google Scholar 

  31. Evans SJ, Waller PC, Davis S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoeidemiol Drug Saf. 2001;10(6):483–6.

    Article  CAS  Google Scholar 

  32. Rothman KJ, Lanes S, Sacks ST. The reporting odds ratio and its advantages over the proportional reporting ratio. Pharmacoepidemiol Drug Saf. 2004;13(8):519–23.

    Article  PubMed  Google Scholar 

  33. Szarfman A, Machado SG, O’Neill RT. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database. Drug Saf. 2002;25(6):381–92.

    Article  PubMed  CAS  Google Scholar 

  34. Bate A, Lindquist M, Edwards IR, et al. A data mining approach for signal detection and analysis. Drug Saf. 2002;25(6):393–7.

    Article  PubMed  CAS  Google Scholar 

  35. Hauben M, Horn S, Reich L. Potential use of data-mining algorithms for the detection of ‘surprise’ adverse drug reactions. Drug Saf. 2007;30(2):143–55.

    Article  PubMed  Google Scholar 

  36. Vilar S, Harpaz R, Chase HS, et al. Facilitating adverse drug event detection in pharmacovigilance databases using molecular structure similarity: application to rhabdomyolysis. J Am Med Inform Assoc. 2011;18(Suppl. 1):i73–80.

    Article  PubMed  Google Scholar 

  37. Darpö B. Detection and reporting of drug-induced proarrhythmias: room for improvement. Europace. 2007;9 Suppl. 4:iv23–36.

    Google Scholar 

  38. Blum MD, Graham DJ, McCloskey CA. Temafloxacin syndrome: review of 95 cases. Clin Infect Dis. 1994;18(6):946–50.

    Article  PubMed  CAS  Google Scholar 

  39. Wysowski DK, Swartz L. Adverse drug event surveillance and drug withdrawals in the United States, 1969–2002: the importance of reporting suspected reactions. Arch Intern Med. 2005;165(12):1363–9.

    Article  PubMed  Google Scholar 

  40. US Food and Drug Administration. FDA announces withdrawal fenfluramine and dexfenfluramine. Available from URL: http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatientsandProviders/ucm179871.htm. Accessed 18 Oct 2011.

  41. Desmond P. Flucloxacillin hepatitis: an Australian epidemic. Aust NZ J Med. 1995;25(3):195–6.

    Article  CAS  Google Scholar 

  42. Salvo F, Polimeni G, Moretti U, et al. Adverse drug reactions related to amoxicillin alone and in association with clavulanic acid: data from spontaneous reporting in Italy. J Antimicrob Chemother. 2007;60(1):121–6.

    Article  PubMed  CAS  Google Scholar 

  43. Thomson JA, Fairley CK, Ugoni AM, et al. Risk factors for the development of amoxycillin-clavulanic acid associated jaundice. Med J Aust. 1995;162(12):638–40.

    PubMed  CAS  Google Scholar 

  44. Withdrawal of rotavirus vaccine recommendation. MMWR Morb Mortal Wkly Rep. 1999;48(43):1007.

  45. Intussusception among recipients of rotavirus vaccine: United States, 1998–1999. MMWR Morb Mortal Wkly Rep. 1999;48(27):577–81.

  46. Murphy TV, Gargiullo PM, Massoudi MS, et al. Intussusception among infants given an oral rotavirus vaccine. N Engl J Med. 2001;344(8):564–72.

    Article  PubMed  CAS  Google Scholar 

  47. Niu MT, Erwin DE, Braun MM. Data mining in the US Vaccine Adverse Event Reporting System (VAERS): early detection of intussusception and other events after rotavirus vaccination. Vaccine. 2001;19(32):4627–34.

    Article  PubMed  CAS  Google Scholar 

  48. Update: Guillain–Barre syndrome among recipients of Menactra meningococcal conjugate vaccine: United States, June 2005–September 2006. MMWR Morb Mortal Wkly Rep. 2006;55(41):1120–4.

  49. Hazell L, Shakir SA. Under-reporting of adverse drug reactions: a systematic review. Drug Saf. 2006;29(5):385–96.

    Article  PubMed  Google Scholar 

  50. Friedman MA, Woodcock J, Lumpkin MM, et al. The safety of newly approved medicines: do recent market removals mean there is a problem? JAMA. 1999;281(18):1728–34.

    Article  PubMed  CAS  Google Scholar 

  51. Merck pulls arthritis drug Vioxx from market. Available from URL: http://www.npr.org/templates/story/story.php?storyId=4054991. Accessed 11 Nov 2011.

  52. Krumholz HM, Ross JS, Presler AH, et al. What have we learnt from Vioxx? BMJ. 2007;334(7585):120–3.

    Article  PubMed  Google Scholar 

  53. Goldman S. Limitations and strengths of spontaneous reports data. Clin Ther. 1998;20 Suppl. C:C40–4.

    Google Scholar 

  54. Trontell A. How the US Food and Drug Administration defines and detects adverse drug events. Curr Ther Res. 2001;62:641–9.

    Article  CAS  Google Scholar 

  55. Wang HW, Hochberg AM, Pearson RK, et al. An experimental investigation of masking in the US FDA adverse event reporting system database. Drug Saf. 2010;33(12):1117–33.

    Article  PubMed  Google Scholar 

  56. Institute of Medicine. The future of drug safety: promoting and protecting the health of the public. Available from URL: http://www.iom.edu/Reports/2006/The-Future-of-Drug-Safety-Promoting-and-Protecting-the-Health-of-the-Public.aspx. Accessed 20 Oct 2011.

  57. Psaty BM, Burke SP. Protecting the health of the public: Institute of Medicine recommendations on drug safety. N Engl J Med. 2006;355(17):1753–5.

    Article  PubMed  CAS  Google Scholar 

  58. Hennessy S. Use of health care databases in pharmacoepidemiology. Basic Clin Pharmacol Toxicol. 2006;98(3):311–3.

    Article  PubMed  CAS  Google Scholar 

  59. Garcia Rodriguez LA, Perez Gutthann S. Use of the UK General Practice Research Database for pharmacoepidemiology. Br J Clin Pharmacol. 1998;45(5):419–25.

    Article  PubMed  CAS  Google Scholar 

  60. Suissa S, Garbe E. Primer: administrative health databases in observational studies of drug effects—advantages and disadvantages. Nat Clin Pract Rheumatol. 2007;3(12):725–32.

    Article  PubMed  CAS  Google Scholar 

  61. Kramarz P, France EK, Destefano F, et al. Population-based study of rotavirus vaccination and intussusception. Pediatr Infect Dis J. 2001;20(4):410–6.

    Article  PubMed  CAS  Google Scholar 

  62. US FDA. The FDA Sentinel initiative. Available from URL: http://www.fda.gov/Safety/FDAsSentinelInitiative. Accessed 12 Jul 2011.

  63. Mini-Sentinel. Available from URL: http://mini-sentinel.org/ Accessed 15 Feb 2011.

  64. Mini-Sentinel. Statistical methods development. Available from URL: http://mini-sentinel.org/methods/methods_development/default.aspx. Accessed 31 May 2012.

  65. Stang PE, Ryan PB, Racoosin JA, et al. Advancing the science for active surveillance: rationale and design for the Observational Medical Outcomes Partnership. Ann Intern Med. 2010;153(9):600–6.

    Article  PubMed  Google Scholar 

  66. Observational Medical Outcomes Partnership. Health outcomes of interest library. Available from URL: http://omop.fnih.org/HOI. Accessed 11 Nov 2011.

  67. Observational Medical Outcomes Partnership. OMOP Cup 2010. Available from URL: http://omop.fnih.org/omopcup. Accessed 10 Oct 2011.

  68. Observational Medical Outcomes Partnership. OMOP 2011 symposium presentations. Available from URL: http://omop.fnih.org/OMOP2011Symposium. Accessed 30 Mar 2012.

  69. Exploring and Understanding Adverse Drug Reactions by Integrative Mining of Clinical records and Biomedical Knowledge. The EU-ADR Project. Available from URL: http://www.euadr-project.org. Accessed 12 Jul 2011.

  70. Trifiro G, Pariente A, Coloma PM, et al. Data mining on electronic health record databases for signal detection in pharmacovigilance: which events to monitor? Pharmacoepidemiol Drug Saf. 2009;18(12):1176–84.

    Article  PubMed  Google Scholar 

  71. Platt R, Carnahan RM, Brown JS, et al. The US Food and Drug Administration’s Mini-Sentinel program: status and direction. Pharmacoepidemiol Drug Saf. 2012;21(Suppl. 1):1–8.

    PubMed  Google Scholar 

  72. Canadian Institutes of Health Research. About the drug safety effectiveness network. Available from URL: http://www.cihr-irsc.gc.ca/e/40269.html. Accessed Mar 2012.

  73. Innovative Medicines Initiative. PROTECT project. Available from URL: http://www.imi-protect.eu/. Accessed Mar 2012.

  74. Global Research in Paediatrics. Available from URL: http://www.grip-network.org/. Accessed 10 May 2012.

  75. Kimura T, Matsushita Y, Yang YH, et al. Pharmacovigilance systems and databases in Korea, Japan, and Taiwan. Pharmacoepidemiol Drug Saf. 2011;20(12):1237–45.

    Article  PubMed  Google Scholar 

  76. Choi NK, Chang Y, Choi YK, et al. Signal detection of rosuvastatin compared to other statins: data-mining study using national health insurance claims database. Pharmacoepidemiol Drug Saf. 2010;19(3):238–46.

    Article  PubMed  CAS  Google Scholar 

  77. Braitstein P, Einterz RM, Sidle JE, et al. “Talkin’ about a revolution”: how electronic health records can facilitate the scale-up of HIV care and treatment and catalyze primary care in resource-constrained settings. J Acquir Immune Defic Syndr. 2009;52(Suppl. 1):S54–7.

    Article  PubMed  Google Scholar 

  78. Tierney WM, Achieng M, Baker E, et al. Experience implementing electronic health records in three East African countries. Stud Health Technol Inform. 2010;160(Pt 1):371–5.

    PubMed  Google Scholar 

  79. Luhm KR, Cardoso MR, Waldman EA. Vaccination coverage among children under two years of age based on electronic immunization registry in Southern Brazil. Rev Saude Publica. 2011;45(1):90–8.

    Article  PubMed  Google Scholar 

  80. Bate A, Edwards IR, Edwards J, et al. Knowledge finding in IMS disease analyzer Mediplus UK database: effective data mining in longitudinal patient safety data. ISOP Annual Meeting: Pharmacovigilance—Current and Future Challenges, Dublin; 6–8 Oct 2004.

  81. Curtis J, Cheng H, Delzell E, et al. Adaptation of Bayesian data mining algorithms to longitudinal claims data: coxib safety as an example. Med Care. 2008;46(9):969–75.

    Article  PubMed  Google Scholar 

  82. Wang X, Hripcsak G, Markatou M, et al. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J Am Med Inform Assoc. 2009;16(3):328–37.

    Article  PubMed  Google Scholar 

  83. Svanstrom H, Callreus T, Hviid A. Temporal data mining for adverse events following immunization in nationwide Danish healthcare databases. Drug Saf. 2010;33(11):1015–25.

    Article  PubMed  Google Scholar 

  84. Velentgas P, Bohn RL, Brown JS, et al. A distributed research network model for post-marketing safety studies: the Meningococcal Vaccine Study. Pharmacoepidemiol Drug Saf. 2008;17(12):1226–34.

    Article  PubMed  Google Scholar 

  85. Lieu TA, Kulldorff M, Davis RL, et al. Real-time vaccine safety surveillance for the early detection of adverse events. Med Care. 2007;45(10 Suppl. 2):S89–95.

    Google Scholar 

  86. Schuemie MJ. Methods for drug safety signal detection in longitudinal observational databases: LGPS and LEOPARD. Pharmacoepidemiol Drug Saf. 2011;20(3):292–9.

    Article  PubMed  CAS  Google Scholar 

  87. Noren GN, Hopstadius J, Bate A, et al. Temporal pattern discovery in longitudinal electronic patient records. Data Min Knowl Disc. 2010;20:361–87.

    Article  Google Scholar 

  88. Observational Medical Outcomes Partnership. OMOP methods library. Available from URL: http://omop.fnih.org/Methods. Accessed 20 May 2012.

  89. Zorych I, Madigan D, Ryan P, et al. Disproportionality methods for pharmacovigilance in longitudinal observational databases. Stat Methods Med Res. 2011 [Epub ahead of print].

  90. Coloma P, Schuemie MJ, Trifiro G, et al. Comparison of methods for drug safety signal detection using electronic healthcare record (EHR) databases: the added value of longitudinal, time-stamped patient information. Presented at the 27th international conference on pharmacoepidemiology and therapeutic risk management, Chicago; 14–17 Aug 2011.

  91. Schuemie MJ, Coloma PM, Straatman H, et al. Using electronic healthcare records for drug safety signal detection: a comparative evaluation of statistical methods. Med Care. 2012;50:890–7.

    Article  PubMed  Google Scholar 

  92. Bauer-Mehren A, van Mullingen EM, Avillach P, et al. Automatic filtering and substantiation of drug safety signals. PLoS Comput Biol. 2012;8(4):e1002457.

    Article  PubMed  CAS  Google Scholar 

  93. Schneeweiss S, Avorn J. A review of uses of health care utilization databases for epidemiologic research on therapeutics. J Clin Epidemiol. 2005;58(4):323–37.

    Article  PubMed  Google Scholar 

  94. Hsia DC, Krushat WM, Fagan AB, et al. Accuracy of diagnostic coding for Medicare patients under the prospective-payment system. N Engl J Med. 1988;318(6):352–5.

    Article  PubMed  CAS  Google Scholar 

  95. Coloma PM, Trifiro G, Schuemie MJ, et al. Electronic healthcare databases for active drug safety surveillance: is there enough leverage? Pharmacoepidemiol Drug Saf. 2012;21:611–21.

    Article  PubMed  Google Scholar 

  96. Daily Med. Trovafloxacin drug label. Available from URL: http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?id=442&CFID=66575927&CFTOKEN=a17d753a0754a3fb-24987D34-D80B-CD9C-39F668DB8C41A045&jsessionid=ca30e46b22b0112063a4. Accessed 13 Jul 2011.

  97. Daily Med. Rosiglitazone drug label. Available from URL: http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?id=38243. Accessed 13 Jul 2011.

  98. European Medicines Agency. Tysabri (natalizumab). Available from URL: http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/000603/human_med_001119.jsp&murl=menus/medicines/medicines.jsp&mid=WC0b01ac058001d124. Accessed 13 Jul 2011.

  99. MHRA. Dopamine agonists for Parkinson’s disease. Available from URL: http://www.mhra.gov.uk/Safetyinformation/Generalsafetyinformationandadvice/Product-specificinformationandadvice/Product-specificinformationandadvice-A-F/DopamineagonistsforParkinson146sdisease/index.htm. Accessed 13 Jul 2011.

  100. European Commission. A guideline on summary of product characteristics. Available from URL: http://ec.europa.eu/health/files/eudralex/vol-2/c/smpc_guideline_rev2_en.pdf. Accessed 20 Apr 2012.

  101. Aronson JK, Ferner RE. Joining the DoTS: new approach to classifying adverse drug reactions. BMJ. 2003;327(7425):1222–5.

    Article  PubMed  CAS  Google Scholar 

  102. Rawlins MD, Thompson JW. Pathogenesis of adverse drug reactions. In: Davies D, editor. Textbook of adverse drug reactions. 3rd ed. Oxford: Oxford University Press; 1985.

  103. Edwards IR. What are the real lessons from Vioxx? Drug Saf. 2005;28(8):651–8.

    Article  PubMed  CAS  Google Scholar 

  104. Fung M, Thornton A, Mybeck K, et al. Evaluation of the characteristics of safety withdrawal of prescription drugs from worldwide pharmaceutical markets—1960 to 1999. Drug Inf J. 2001;35:293–317.

    Google Scholar 

  105. Trifiro G, Patadia V, Schuemie MJ, et al. EU-ADR healthcare database network vs. spontaneous reporting system database: preliminary comparison of signal detection. Stud Health Technol Inform. 2011;166:25–30.

    PubMed  Google Scholar 

  106. Tatonetti NP, Fernald GH, Altman RB. A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports. J Am Med Inform Assoc. 2012;19(1):79–85.

    Article  PubMed  Google Scholar 

  107. Meyboom RH, Lindquist M, Egberts AC, et al. Signal selection and follow-up in pharmacovigilance. Drug Saf. 2002;25(6):459–65.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Hector Izurieta of the US FDA, and Dr. Jim Slattery of the European Medicines Agency for reviewing the manuscript.

Funding

No sources of funding were used to prepare this manuscript.

Conflict of interest

Miriam Sturkenboom is running a research group that occasionally performs studies for pharmaceutical companies according to unconditional grants. These companies include AstraZeneca, Pfizer, Lilly and Boehringer. She has also been a consultant to Pfizer, Novartis, Consumer Health, Servier, Celgene and Lundbeck on issues not related to this paper. Vaishali Patadia is an employee of Astellas Pharma; the views expressed in this paper are her personal views and do not reflect the views of Astellas Pharma. Preciosa M. Coloma and Gianluca Trifirò have no conflicts of interest to declare that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preciosa M. Coloma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 267 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coloma, P.M., Trifirò, G., Patadia, V. et al. Postmarketing Safety Surveillance. Drug Saf 36, 183–197 (2013). https://doi.org/10.1007/s40264-013-0018-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-013-0018-x

Keywords

Navigation