Skip to main content
Log in

Narcolepsy Type 1 as an Autoimmune Disorder: Evidence, and Implications for Pharmacological Treatment

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Narcolepsy type 1 (NT1) is a rare sleep disorder caused by the very specific loss of hypothalamic hypocretin (Hcrt)/orexin neurons. The exact underlying process leading to this destruction is yet unknown, but indirect evidence strongly supports an autoimmune origin. The association with immune-related genetic factors, in particular the strongest association ever reported in a disease with an allele of a human leukocyte antigen (HLA) gene, and with environmental factors (i.e., the H1N1 influenza infection and vaccination during the pandemic in 2009) are in favor of such a hypothesis. The loss of Hcrt neurons is irreversible, and NT1 is currently an incurable and disabling condition. Patients are managed with symptomatic medication, targeting the main symptoms (excessive daytime sleepiness, cataplexy, disturbed nocturnal sleep), and they require a lifelong treatment. Improved diagnostic tools, together with an increased understanding of the pathogenesis of NT1, may lead to new therapeutic and even preventive interventions. One future treatment could include Hcrt replacement, but this neuropeptide does not cross the blood–brain barrier. However, Hcrt receptor agonists may be promising candidates to treat NT1. Another option is immune-based therapies, administered at disease onset, with already some initiatives to slow down or stop the dysimmune process. Whether immune-based therapy could be beneficial in NT1 remains, however, to be proven.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AASM: American Academy of Sleep Medicine. ICSD-3: International Classification of Sleep Disorders. 3rd ed. Darien, IL; 2014.

    Google Scholar 

  2. Ohayon MM, Priest RG, Zulley J, Smirne S, Paiva T. Prevalence of narcolepsy symptomatology and diagnosis in the European general population. Neurology. 2002;58:1826–33.

    Article  CAS  PubMed  Google Scholar 

  3. Dauvilliers Y, Arnulf I, Mignot E. Narcolepsy with cataplexy. Lancet. 2007;369:499–511.

    Article  PubMed  Google Scholar 

  4. Scammell TE. Narcolepsy. N Engl J Med. 2015;373:2654–62.

    Article  CAS  PubMed  Google Scholar 

  5. Peyron C, Faraco J, Rogers W, Ripley B, Overeem S, Charnay Y, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6:991–7.

    Article  CAS  PubMed  Google Scholar 

  6. Mignot E, Lammers GJ, Ripley B, Okun M, Nevsimalova S, Overeem S, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59:1553–62.

    Article  PubMed  Google Scholar 

  7. Dauvilliers Y, Baumann CR, Carlander B, Bischof M, Blatter T, Lecendreux M, et al. CSF hypocretin-1 levels in narcolepsy, Kleine-Levin syndrome, and other hypersomnias and neurological conditions. J Neurol Neurosurg Psychiatry. 2003;74:1667–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li S-B, Jones JR, de Lecea L. Hypocretins, neural systems, physiology, and psychiatric disorders. Curr Psychiatry Rep. 2016;18:7.

    Article  PubMed  Google Scholar 

  9. Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98:437–51.

    Article  CAS  PubMed  Google Scholar 

  10. Liblau RS, Vassalli A, Seifinejad A, Tafti M. Hypocretin (orexin) biology and the pathophysiology of narcolepsy with cataplexy. Lancet Neurol. 2015;14:318–28.

    Article  CAS  PubMed  Google Scholar 

  11. Partinen M, Kornum BR, Plazzi G, Jennum P, Julkunen I, Vaarala O. Narcolepsy as an autoimmune disease: the role of H1N1 infection and vaccination. Lancet Neurol. 2014;13:600–13.

    Article  CAS  PubMed  Google Scholar 

  12. Kornum BR, Knudsen S, Ollila HM, Pizza F, Jennum PJ, Dauvilliers Y, et al. Narcolepsy. Nat Rev Dis Primer. 2017;3:16100.

    Article  Google Scholar 

  13. Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky’s postulates revisited). Immunol Today. 1993;14:426–30.

    Article  CAS  PubMed  Google Scholar 

  14. Damoiseaux JGMC, Tervaert JWC. The definition of autoimmune disease: are Koch’s postulates applicable? Neth J Med. 2002;60:266–8.

    CAS  PubMed  Google Scholar 

  15. Dauvilliers Y, Montplaisir J, Molinari N, Carlander B, Ondze B, Besset A, et al. Age at onset of narcolepsy in two large populations of patients in France and Quebec. Neurology. 2001;57:2029–33.

    Article  CAS  PubMed  Google Scholar 

  16. Dauvilliers Y, Maret S, Bassetti C, Carlander B, Billiard M, Touchon J, et al. A monozygotic twin pair discordant for narcolepsy and CSF hypocretin-1. Neurology. 2004;62:2137–8.

    Article  CAS  PubMed  Google Scholar 

  17. Jennum PJ, Kornum BR, Issa NM, Gammeltoft S, Tommerup N, Morling N, et al. Monozygotic twins discordant for narcolepsy type 1 and multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2016;3:e249.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chabas D, Taheri S, Renier C, Mignot E. The genetics of narcolepsy. Annu Rev Genom Hum Genet. 2003;4:459–83.

    Article  CAS  Google Scholar 

  19. Silber MH, Krahn LE, Olson EJ, Pankratz VS. The epidemiology of narcolepsy in Olmsted County, Minnesota: a population-based study. Sleep. 2002;25:197–202.

    Article  PubMed  Google Scholar 

  20. Quintero OL, Amador-Patarroyo MJ, Montoya-Ortiz G, Rojas-Villarraga A, Anaya J-M. Autoimmune disease and gender: plausible mechanisms for the female predominance of autoimmunity. J Autoimmun. 2012;38:J109–19.

    Article  CAS  PubMed  Google Scholar 

  21. Barateau L, Lopez R, Arnulf I, Lecendreux M, Franco P, Drouot X, et al. Comorbidity between central disorders of hypersomnolence and immune-based disorders. Neurology. 2017;88(1):93–100.

    Article  PubMed  Google Scholar 

  22. Dauvilliers Y, Abril B, Mas E, Michel F, Tafti M. Normalization of hypocretin-1 in narcolepsy after intravenous immunoglobulin treatment. Neurology. 2009;73:1333–4.

    Article  CAS  PubMed  Google Scholar 

  23. Lecendreux M, Berthier J, Corny J, Bourdon O, Dossier C, Delclaux C. Intravenous immunoglobulin therapy in pediatric narcolepsy: a nonrandomized, open-label, controlled, longitudinal observational study. J Clin Sleep Med. 2017;13(3):441–53.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Juji T, Satake M, Honda Y, Doi Y. HLA antigens in Japanese patients with narcolepsy. All the patients were DR2 positive. Tissue Antigens. 1984;24:316–9.

    Article  CAS  PubMed  Google Scholar 

  25. Mignot E. Complex HLA-DR and -DQ interactions confer risk of narcolepsy-cataplexy in three ethnic groups. Am J Hum Genet. 2001;68:686–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han F, Lin L, Schormair B, Pizza F, Plazzi G, Ollila HM, et al. HLA DQB1*06:02 negative narcolepsy with hypocretin/orexin deficiency. Sleep. 2014;37:1601–8.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tafti M, Hor H, Dauvilliers Y, Lammers GJ, Overeem S, Mayer G, et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep. 2014;37:19–25.

    PubMed  PubMed Central  Google Scholar 

  28. Hor H, Kutalik Z, Dauvilliers Y, Valsesia A, Lammers GJ, Donjacour CEHM, et al. Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat Genet. 2010;42:786–9.

    Article  CAS  PubMed  Google Scholar 

  29. Ollila HM, Ravel J-M, Han F, Faraco J, Lin L, Zheng X, et al. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. Am J Hum Genet. 2015;96:136–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tafti M, Lammers GJ, Dauvilliers Y, Overeem S, Mayer G, Nowak J, et al. Narcolepsy-associated HLA class I alleles implicate cell-mediated cytotoxicity. Sleep. 2016;39(3):581–7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hallmayer J. Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet. 2009;41:708–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miyagawa T, Honda M, Kawashima M, Shimada M, Tanaka S, Honda Y, et al. Polymorphism located in TCRA locus confers susceptibility to essential hypersomnia with HLA-DRB1*1501-DQB1*0602 haplotype. J Hum Genet. 2010;55:63–5.

    Article  CAS  PubMed  Google Scholar 

  33. Kornum BR, Kawashima M, Faraco J, Lin L, Rico TJ, Hesselson S, et al. Common variants in P2RY11 are associated with narcolepsy. Nat Genet. 2011;43:66–71.

    Article  CAS  PubMed  Google Scholar 

  34. Degn M, Dauvilliers Y, Dreisig K, Lopez R, Pfister C, Pradervand S, et al. Rare missense mutations in P2RY11 in narcolepsy with cataplexy. Neurol: Brain J; 2017.

    Google Scholar 

  35. Han F, Faraco J, Dong XS, Ollila HM, Lin L, Li J, et al. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet. 2013;9:e1003880.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Toyoda H, Miyagawa T, Koike A, Kanbayashi T, Imanishi A, Sagawa Y, et al. A polymorphism in CCR1/CCR3 is associated with narcolepsy. Brain Behav Immun. 2015;49:148–55.

    Article  CAS  PubMed  Google Scholar 

  37. Faraco J, Lin L, Kornum BR, Kenny EE, Trynka G, Einen M, et al. ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLoS Genet. 2013;9:e1003270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Degn M, Kornum BR. Type 1 narcolepsy: a CD8(+) T cell-mediated disease? Ann N Y Acad Sci. 2015;1351:80–8.

    Article  CAS  PubMed  Google Scholar 

  39. Partinen M, Kornum BR, Plazzi G, Jennum P, Julkunen I, Vaarala O. Does autoreactivity have a role in narcolepsy? Lancet Neurol. 2014;13:1072–3.

    Article  PubMed  Google Scholar 

  40. Hor H, Bartesaghi L, Kutalik Z, Vicário JL, de Andrés C, Pfister C, et al. A missense mutation in myelin oligodendrocyte glycoprotein as a cause of familial narcolepsy with cataplexy. Am J Hum Genet. 2011;89:474–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han F, Lin L, Warby SC, Faraco J, Li J, Dong SX, et al. Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann Neurol. 2011;70:410–7.

    Article  PubMed  Google Scholar 

  42. Orellana C, Villemin E, Tafti M, Carlander B, Besset A, Billiard M. Life events in the year preceding the onset of narcolepsy. Sleep. 1994;17:S50–3.

    Article  CAS  PubMed  Google Scholar 

  43. Picchioni D, Hope CR, Harsh JR. A case-control study of the environmental risk factors for narcolepsy. Neuroepidemiology. 2007;29:185–92.

    Article  PubMed  Google Scholar 

  44. Dauvilliers Y, Arnulf I, Lecendreux M, Monaca Charley C, Franco P, Drouot X, et al. Increased risk of narcolepsy in children and adults after pandemic H1N1 vaccination in France. Brain J Neurol. 2013;136:2486–96.

    Article  Google Scholar 

  45. Partinen M, Saarenpää-Heikkilä O, Ilveskoski I, Hublin C, Linna M, Olsén P, et al. Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS One. 2012;7:e33723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heier MS, Gautvik KM, Wannag E, Bronder KH, Midtlyng E, Kamaleri Y, et al. Incidence of narcolepsy in Norwegian children and adolescents after vaccination against H1N1 influenza A. Sleep Med. 2013;14:867–71.

    Article  CAS  PubMed  Google Scholar 

  47. Miller E, Andrews N, Stellitano L, Stowe J, Winstone AM, Shneerson J, et al. Risk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysis. BMJ. 2013;346:f794.

    Article  PubMed  Google Scholar 

  48. Montplaisir J, Petit D, Quinn M-J, Ouakki M, Deceuninck G, Desautels A, et al. Risk of narcolepsy associated with inactivated adjuvanted (AS03) A/H1N1 (2009) pandemic influenza vaccine in Quebec. PLoS One. 2014;9:e108489.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Vaarala O, Vuorela A, Partinen M, Baumann M, Freitag TL, Meri S, et al. Antigenic differences between AS03 adjuvanted influenza A (H1N1) pandemic vaccines: implications for pandemrix-associated narcolepsy risk. PLoS One. 2014;9:e114361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ahmed SS, Volkmuth W, Duca J, Corti L, Pallaoro M, Pezzicoli A, et al. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci Transl Med. 2015;7:294ra105.

    Article  PubMed  CAS  Google Scholar 

  51. Aran A, Lin L, Nevsimalova S, Plazzi G, Hong SC, Weiner K, et al. Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep. 2009;32:979–83.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pizza F, Franceschini C, Peltola H, Vandi S, Finotti E, Ingravallo F, et al. Clinical and polysomnographic course of childhood narcolepsy with cataplexy. Brain J Neurol. 2013;136:3787–95.

    Article  Google Scholar 

  53. Ambati A, Poiret T, Svahn B-M, Valentini D, Khademi M, Kockum I, et al. Increased β-haemolytic group A streptococcal M6 serotype and streptodornase B-specific cellular immune responses in Swedish narcolepsy cases. J Intern Med. 2015;278:264–76.

    Article  CAS  PubMed  Google Scholar 

  54. Carlander B, Puech-Cathala AM, Jaussent I, Scholz S, Bayard S, Cochen V, et al. Low vitamin D in narcolepsy with cataplexy. PLoS One. 2011;6:e20433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dauvilliers Y, Evangelista E, Lopez R, Barateau L, Scholz S, Crastes de Paulet B, et al. Vitamin D deficiency in type 1 narcolepsy: a reappraisal. Sleep Med. 2017;29:1–6.

    Article  PubMed  Google Scholar 

  56. Smith AJF, Jackson MW, Neufing P, McEvoy RD, Gordon TP. A functional autoantibody in narcolepsy. Lancet Lond Engl. 2004;364:2122–4.

    Article  CAS  Google Scholar 

  57. Bergman P, Adori C, Vas S, Kai-Larsen Y, Sarkanen T, Cederlund A, et al. Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc Natl Acad Sci USA. 2014;111:E3735–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Toyoda H, Tanaka S, Miyagawa T, Honda Y, Tokunaga K, Honda M. Anti-Tribbles homolog 2 autoantibodies in Japanese patients with narcolepsy. Sleep. 2010;33:875–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kawashima M, Lin L, Tanaka S, Jennum P, Knudsen S, Nevsimalova S, et al. Anti-Tribbles homolog 2 (TRIB2) autoantibodies in narcolepsy are associated with recent onset of cataplexy. Sleep. 2010;33:869–74.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cvetkovic-Lopes V. Elevated Tribbles homolog 2 specific antibody levels in narcolepsy patients. J Clin Investig. 2010;120:713–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Katzav A, Arango MT, Kivity S, Tanaka S, Givaty G, Agmon-Levin N, et al. Passive transfer of narcolepsy: anti-TRIB2 autoantibody positive patient IgG causes hypothalamic orexin neuron loss and sleep attacks in mice. J Autoimmun. 2013;45:24–30.

    Article  CAS  PubMed  Google Scholar 

  62. Tanaka S, Honda Y, Honda M, Yamada H, Honda K, Kodama T. Anti-tribbles pseudokinase 2 (TRIB2)-immunization modulates hypocretin/orexin neuronal functions. Sleep. 2017;40(1):zsw036.

    Google Scholar 

  63. Saariaho A-H, Vuorela A, Freitag TL, Pizza F, Plazzi G, Partinen M, et al. Autoantibodies against ganglioside GM3 are associated with narcolepsy-cataplexy developing after Pandemrix vaccination against 2009 pandemic H1N1 type influenza virus. J Autoimmun. 2015;63:68–75.

    Article  CAS  PubMed  Google Scholar 

  64. Giannoccaro MP, Waters P, Pizza F, Liguori R, Plazzi G, Vincent A. Antibodies against hypocretin receptor 2 are rare in narcolepsy. Sleep. 2017;40(2):zsw056.

    Article  Google Scholar 

  65. Black JL, Krahn LE, Pankratz VS, Silber M. Search for neuron-specific and nonneuron-specific antibodies in narcoleptic patients with and without HLA DQB1*0602. Sleep. 2002;25:719–23.

    Article  PubMed  Google Scholar 

  66. Black JL, Silber MH, Krahn LE, Fredrickson PA, Pankratz VS, Avula R, et al. Analysis of hypocretin (orexin) antibodies in patients with narcolepsy. Sleep. 2005;28:427–31.

    Article  PubMed  Google Scholar 

  67. Overeem S, Verschuuren JJ, Fronczek R, Schreurs L, den Hertog H, Hegeman-Kleinn IM, et al. Immunohistochemical screening for autoantibodies against lateral hypothalamic neurons in human narcolepsy. J Neuroimmunol. 2006;174:187–91.

    Article  CAS  PubMed  Google Scholar 

  68. Tanaka S, Honda Y, Inoue Y, Honda M. Detection of autoantibodies against hypocretin, hcrtrl, and hcrtr2 in narcolepsy: anti-Hcrt system antibody in narcolepsy. Sleep. 2006;29:633–8.

    Article  PubMed  Google Scholar 

  69. Knudsen S, Mikkelsen JD, Jennum P. Antibodies in narcolepsy-cataplexy patient serum bind to rat hypocretin neurons. NeuroReport. 2007;18:77–9.

    Article  PubMed  Google Scholar 

  70. Deloumeau A, Bayard S, Coquerel Q, Déchelotte P, Bole-Feysot C, Carlander B, et al. Increased immune complexes of hypocretin autoantibodies in narcolepsy. PLoS One. 2010;5:e13320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. van der Heide A, Hegeman-Kleinn IM, Peeters E, Lammers GJ, Fronczek R. Immunohistochemical screening for antibodies in recent onset type 1 narcolepsy and after H1N1 vaccination. J Neuroimmunol. 2015;283:58–62.

    Article  PubMed  CAS  Google Scholar 

  72. Ramberger M, Högl B, Stefani A, Mitterling T, Reindl M, Lutterotti A. CD4+ T-cell reactivity to orexin/hypocretin in patients with narcolepsy type 1. Sleep. 2017;40(3).

  73. Thannickal TC. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27:469–74.

    Article  CAS  PubMed  Google Scholar 

  74. Dauvilliers Y, Bauer J, Rigau V, Lalloyer N, Labauge P, Carlander B, et al. Hypothalamic immunopathology in anti-Ma-associated diencephalitis with narcolepsy-cataplexy. JAMA Neurol. 2013;70:1305–10.

    PubMed  Google Scholar 

  75. Bernard-Valnet R, Yshii L, Quériault C, Nguyen X-H, Arthaud S, Rodrigues M, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci USA. 2016;113:10956–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tabuchi S, Tsunematsu T, Black SW, Tominaga M, Maruyama M, Takagi K, et al. Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function. J Neurosci Off J Soc Neurosci. 2014;34:6495–509.

    Article  CAS  Google Scholar 

  77. Morrish E, King MA, Smith IE, Shneerson JM. Factors associated with a delay in the diagnosis of narcolepsy. Sleep Med. 2004;5:37–41.

    Article  PubMed  Google Scholar 

  78. Hartmann FJ, Bernard-Valnet R, Quériault C, Mrdjen D, Weber LM, Galli E, et al. High-dimensional single-cell analysis reveals the immune signature of narcolepsy. Med: J Exp; 2016.

    Google Scholar 

  79. Overeem S, Dalmau J, Bataller L, Nishino S, Mignot E, Verschuuren J, et al. Hypocretin-1 CSF levels in anti-Ma2 associated encephalitis. Neurology. 2004;62:138–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Okun ML, Giese S, Lin L, Einen M, Mignot E, Coussons-Read ME. Exploring the cytokine and endocrine involvement in narcolepsy. Brain Behav Immun. 2004;18:326–32.

    Article  CAS  PubMed  Google Scholar 

  81. Himmerich H, Beitinger PA, Fulda S, Wehrle R, Linseisen J, Wolfram G, et al. Plasma levels of tumor necrosis factor alpha and soluble tumor necrosis factor receptors in patients with narcolepsy. Arch Intern Med. 2006;166:1739–43.

    Article  CAS  PubMed  Google Scholar 

  82. Tanaka S, Honda M, Toyoda H, Kodama T. Increased plasma IL-6, IL-8, TNF-alpha, and G-CSF in Japanese narcolepsy. Hum Immunol. 2014;75:940–4.

    Article  CAS  PubMed  Google Scholar 

  83. Dauvilliers Y, Jaussent I, Lecendreux M, Scholz S, Bayard S, Cristol JP, et al. Cerebrospinal fluid and serum cytokine profiles in narcolepsy with cataplexy: a case-control study. Brain Behav Immun. 2014;37:260–6.

    Article  CAS  PubMed  Google Scholar 

  84. Lecendreux M, Libri V, Jaussent I, Mottez E, Lopez R, Lavault S, et al. Impact of cytokine in type 1 narcolepsy: role of pandemic H1N1 vaccination? J Autoimmun. 2015;60:20–31.

    Article  CAS  PubMed  Google Scholar 

  85. Kornum BR, Pizza F, Knudsen S, Plazzi G, Jennum P, Mignot E. Cerebrospinal fluid cytokine levels in type 1 narcolepsy patients very close to onset. Brain Behav Immun. 2015;49:54–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tesoriero C, Codita A, Zhang M-D, Cherninsky A, Karlsson H, Grassi-Zucconi G, et al. H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep-wake regulatory neurons in mice. Proc Natl Acad Sci USA. 2016;113:E368–77.

    Article  CAS  PubMed  Google Scholar 

  87. Barateau L, Lopez R, Dauvilliers Y. Treatment options for narcolepsy. CNS Drugs. 2016;30:369–79.

    Article  CAS  PubMed  Google Scholar 

  88. Roth T, Dauvilliers Y, Guinta D, Alvarez-Horine S, Dynin E, Black J. Effect of sodium oxybate on disrupted nighttime sleep in patients with narcolepsy. J Sleep Res. 2017;26(4):407–14.

    Article  PubMed  Google Scholar 

  89. Szakacs Z, Dauvilliers Y, Mikhaylov V, Poverennova I, Krylov S, Jankovic S, et al. Safety and efficacy of pitolisant on cataplexy in patients with narcolepsy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2017;16(3):200–7.

    Article  CAS  PubMed  Google Scholar 

  90. Hasan S, Pradervand S, Ahnaou A, Drinkenburg W, Tafti M, Franken P. How to keep the brain awake? The complex molecular pharmacogenetics of wake promotion. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2009;34:1625–40.

    Article  CAS  Google Scholar 

  91. Bogan RK, Feldman N, Emsellem HA, Rosenberg R, Lu Y, Bream G, et al. Effect of oral JZP-110 (ADX-N05) treatment on wakefulness and sleepiness in adults with narcolepsy. Sleep Med. 2015;16:1102–8.

    Article  PubMed  Google Scholar 

  92. Liu X, Petit J-M, Ezan P, Gyger J, Magistretti P, Giaume C. The psychostimulant modafinil enhances gap junctional communication in cortical astrocytes. Neuropharmacology. 2013;75:533–8.

    Article  CAS  PubMed  Google Scholar 

  93. Hecht M, Lin L, Kushida CA, Umetsu DT, Taheri S, Einen M, et al. Report of a case of immunosuppression with prednisone in an 8-year-old boy with an acute onset of hypocretin-deficiency narcolepsy. Sleep. 2003;26:809–10.

    Article  PubMed  Google Scholar 

  94. Lünemann JD, Quast I, Dalakas MC. Efficacy of intravenous immunoglobulin in neurological diseases. Neurother J Am Soc Exp Neurother. 2016;13:34–46.

    Article  CAS  Google Scholar 

  95. Lecendreux M, Maret S, Bassetti C, Mouren M-C, Tafti M. Clinical efficacy of high-dose intravenous immunoglobulins near the onset of narcolepsy in a 10-year-old boy. J Sleep Res. 2003;12:347–8.

    Article  PubMed  Google Scholar 

  96. Dauvilliers Y, Carlander B, Rivier F, Touchon J, Tafti M. Successful management of cataplexy with intravenous immunoglobulins at narcolepsy onset. Ann Neurol. 2004;56:905–8.

    Article  CAS  PubMed  Google Scholar 

  97. Chen W, Black J, Call P, Mignot E. Late-onset narcolepsy presenting as rapidly progressing muscle weakness: response to plasmapheresis. Ann Neurol. 2005;58:489–90.

    Article  PubMed  Google Scholar 

  98. Dauvilliers Y. Follow-up of four narcolepsy patients treated with intravenous immunoglobulins. Ann Neurol. 2006;60:153.

    Article  PubMed  Google Scholar 

  99. Fronczek R, Verschuuren J, Lammers GJ. Response to intravenous immunoglobulins and placebo in a patient with narcolepsy with cataplexy. J Neurol. 2007;254:1607–8.

    Article  PubMed  Google Scholar 

  100. Plazzi G, Poli F, Franceschini C, Parmeggiani A, Pirazzoli P, Bernardi F, et al. Intravenous high-dose immunoglobulin treatment in recent onset childhood narcolepsy with cataplexy. J Neurol. 2008;255:1549–54.

    Article  PubMed  Google Scholar 

  101. Valko PO, Khatami R, Baumann CR, Bassetti CL. No persistent effect of intravenous immunoglobulins in patients with narcolepsy with cataplexy. J Neurol. 2008;255:1900–3.

    Article  PubMed  Google Scholar 

  102. Knudsen S, Biering-Sørensen B, Kornum BR, Petersen ER, Ibsen JD, Gammeltoft S, et al. Early IVIg treatment has no effect on post-H1N1 narcolepsy phenotype or hypocretin deficiency. Neurology. 2012;79:102–3.

    Article  PubMed  Google Scholar 

  103. Cossburn M, Pace AA, Jones J, Ali R, Ingram G, Baker K, et al. Autoimmune disease after alemtuzumab treatment for multiple sclerosis in a multicenter cohort. Neurology. 2011;77:573–9.

    Article  CAS  PubMed  Google Scholar 

  104. Hersh CM, Cohen JA. Alemtuzumab for the treatment of relapsing-remitting multiple sclerosis. Immunotherapy. 2014;6:249–59.

    Article  CAS  PubMed  Google Scholar 

  105. Donjacour CEHM, Lammers GJ. A remarkable effect of alemtuzumab in a patient suffering from narcolepsy with cataplexy. J Sleep Res. 2012;21:479–80.

    Article  PubMed  Google Scholar 

  106. Sarkanen T, Alén R, Partinen M. Transient impact of rituximab in H1N1 vaccination-associated narcolepsy with severe psychiatric symptoms. Neurologist. 2016;21:85–6.

    Article  PubMed  Google Scholar 

  107. Luca G, Haba-Rubio J, Dauvilliers Y, Lammers G-J, Overeem S, Donjacour CE, et al. Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. J Sleep Res. 2013;22:482–95.

    Article  PubMed  Google Scholar 

  108. Thorpy MJ, Krieger AC. Delayed diagnosis of narcolepsy: characterization and impact. Sleep Med. 2014;15:502–7.

    Article  PubMed  Google Scholar 

  109. Lopez R, Barateau L, Evangelista E, Chenini S, Robert P, Jaussent I, et al. Temporal changes in the cerebrospinal fluid level of hypocretin-1 and histamine in narcolepsy. Sleep. 2016.

  110. Rice GPA, Hartung H-P, Calabresi PA. Anti-alpha4 integrin therapy for multiple sclerosis: mechanisms and rationale. Neurology. 2005;64:1336–42.

    Article  CAS  PubMed  Google Scholar 

  111. Ntranos A, Hall O, Robinson DP, Grishkan IV, Schott JT, Tosi DM, et al. FTY720 impairs CD8 T-cell function independently of the sphingosine-1-phosphate pathway. J Neuroimmunol. 2014;270:13–21.

    Article  CAS  PubMed  Google Scholar 

  112. Ruperto N, Lovell DJ, Quartier P, Paz E, Rubio-Pérez N, Silva CA, et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet Lond Engl. 2008;372:383–91.

    Article  CAS  Google Scholar 

  113. Browne SK. Anticytokine autoantibody-associated immunodeficiency. Annu Rev Immunol. 2014;32:635–57.

    Article  CAS  PubMed  Google Scholar 

  114. Ahlmann M, Hempel G. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol. 2016;78:661–71.

    Article  CAS  PubMed  Google Scholar 

  115. Pizza F, Vandi S, Liguori R, Parchi P, Avoni P, Mignot E, et al. Primary progressive narcolepsy type 1: the other side of the coin. Neurology. 2014;83:2189–90.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Konya C, Goronzy JJ, Weyand CM. Treating autoimmune disease by targeting CD8(+) T suppressor cells. Expert Opin Biol Ther. 2009;9:951–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. MacLeod MKL, Anderton SM. Antigen-based immunotherapy (AIT) for autoimmune and allergic disease. Curr Opin Pharmacol. 2015;23:11–6.

    Article  CAS  PubMed  Google Scholar 

  118. Lutterotti A, Martin R. Antigen-specific tolerization approaches in multiple sclerosis. Expert Opin Investig Drugs. 2014;23:9–20.

    Article  CAS  PubMed  Google Scholar 

  119. Harrison LC, Wentworth JM, Zhang Y, Bandala-Sanchez E, Böhmer RM, Neale AM, et al. Antigen-based vaccination and prevention of type 1 diabetes. Curr Diabet Rep. 2013;13:616–23.

    Article  CAS  Google Scholar 

  120. Zandian A, Forsström B, Häggmark-Månberg A, Schwenk JM, Uhlén M, Nilsson P, et al. Whole-proteome peptide microarrays for profiling autoantibody repertoires within multiple sclerosis and narcolepsy. J Proteome Res. 2017;16:1300–14.

    Article  CAS  PubMed  Google Scholar 

  121. Kantor S, Mochizuki T, Lops SN, Ko B, Clain E, Clark E, et al. Orexin gene therapy restores the timing and maintenance of wakefulness in narcoleptic mice. Sleep. 2013;36:1129–38.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Mieda M, Willie JT, Hara J, Sinton CM, Sakurai T, Yanagisawa M. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci USA. 2004;101:4649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dauvilliers Y, Siegel JM, Lopez R, Torontali ZA, Peever JH. Cataplexy–clinical aspects, pathophysiology and management strategy. Nat Rev Neurol. 2014;10:386–95.

    Article  CAS  PubMed  Google Scholar 

  124. Deadwyler SA, Porrino L, Siegel JM, Hampson RE. Systemic and nasal delivery of orexin-A (hypocretin-1) reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci Off J Soc Neurosci. 2007;27:14239–47.

    Article  CAS  Google Scholar 

  125. Weinhold SL, Seeck-Hirschner M, Nowak A, Hallschmid M, Göder R, Baier PC. The effect of intranasal orexin-A (hypocretin-1) on sleep, wakefulness and attention in narcolepsy with cataplexy. Behav Brain Res. 2014;262:8–13.

    Article  CAS  PubMed  Google Scholar 

  126. Nagahara T, Saitoh T, Kutsumura N, Irukayama-Tomobe Y, Ogawa Y, Kuroda D, et al. Design and synthesis of non-peptide, selective orexin receptor 2 agonists. J Med Chem. 2015;58:7931–7.

    Article  CAS  PubMed  Google Scholar 

  127. Irukayama-Tomobe Y, Ogawa Y, Tominaga H, Ishikawa Y, Hosokawa N, Ambai S, et al. Nonpeptide orexin type-2 receptor agonist ameliorates narcolepsy-cataplexy symptoms in mouse models. Proc Natl Acad Sci USA. 2017;114:5731–6.

    Article  CAS  PubMed  Google Scholar 

  128. Hasegawa E, Yanagisawa M, Sakurai T, Mieda M. Orexin neurons suppress narcolepsy via 2 distinct efferent pathways. J Clin Investig. 2014;124:604–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Dauvilliers.

Ethics declarations

Funding

This was not an industry-supported study.

Conflicts of Interest

We declare no conflicts of interest related to this article. L. Barateau has received speaker’s fees from UCB Pharma and paid travel accommodation from Laidet Medical. Y. Dauvilliers has received funds for speaking, board engagements, and travel to conferences with UCB Pharma, Jazz and Bioprojet. R. Liblau and C. Peyron had no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barateau, L., Liblau, R., Peyron, C. et al. Narcolepsy Type 1 as an Autoimmune Disorder: Evidence, and Implications for Pharmacological Treatment. CNS Drugs 31, 821–834 (2017). https://doi.org/10.1007/s40263-017-0464-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-017-0464-6

Navigation