Skip to main content
Log in

The Interplay Between Liver First-Pass Effect and Lymphatic Absorption of Cannabidiol and Its Implications for Cannabidiol Oral Formulations

  • Current Opinion
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

For highly lipophilic drugs, passage into the intestinal lymphatic system rather than the portal vein following oral administration may represent a major alternative route of delivery into the general circulation. Increasing intestinal lymphatic transport provides an effective strategy to improve oral bioavailability when hepatic first-pass metabolism is a major rate-limiting step hampering access to the systemic circulation after oral dosing. The transfer of orally administered, highly lipid-soluble drugs to the lymphatic system is mediated by their association with chylomicrons, large intestinal lipoproteins that are assembled in the enterocytes in the presence of long-chain triglycerides or long-chain fatty acids. Due to its very high lipophilicity, cannabidiol (CBD) has physicochemical features (e.g. logP = 6.3) consistent with an oral absorption mediated at least in part by transport via the intestinal lymphatic system. CBD also undergoes extensive first-pass hepatic metabolism. Formulation changes favoring diversion of orally absorbed CBD from the portal to the lymphatic circulation pathway can result in reduced first-pass liver metabolism, enhanced oral bioavailability, and reduced intra- and intersubject variability in systemic exposure. In this manuscript, we discuss (1) evidence for CBD undergoing hepatic first-pass liver metabolism and lymphatic absorption to a clinically important extent; (2) the potential interplay between improved oral absorption, diversion of orally absorbed drug to the lymphatic system, and magnitude of presystemic elimination in the liver; and (3) strategies by which innovative chemical and/or pharmaceutical delivery systems of CBD with improved bioavailability could be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koziolek M, Alcaro S, Augustijns P, Basit AW, Grimm M, Hens B, et al. The mechanisms of pharmacokinetic food–drug interactions: a perspective from the UNGAP group. Eur J Pharm Sci. 2019;134:31–59.

    CAS  PubMed  Google Scholar 

  2. Porter CJ, Trevaskis NL, Charman WN. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat Rev Drug Discov. 2007;6(3):231–48.

    CAS  PubMed  Google Scholar 

  3. Vost A, Maclean N. Hydrocarbon transport in chylomicrons and high-density lipoproteins in rat. Lipids. 1984;19(6):423–35.

    CAS  PubMed  Google Scholar 

  4. Nordskog BK, Phan CT, Nutting DF, Tso P. An examination of the factors affecting intestinal lymphatic transport of dietary lipids. Adv Drug Deliv Rev. 2001;50(1–2):21–44.

    CAS  PubMed  Google Scholar 

  5. Franco V, Perucca E. Pharmacological and therapeutic properties of cannabidiol for epilepsy. Drugs. 2019;79(13):1435–54.

    CAS  PubMed  Google Scholar 

  6. Tayo B, Taylor L, Sahebkar F, Morrison G. A phase I, open-label, parallel-group, single-dose Trial of the pharmacokinetics, safety, and tolerability of cannabidiol in subjects with mild to severe renal impairment. Clin Pharmacokinet. 2020;59(6):747–55.

    CAS  PubMed  Google Scholar 

  7. Perucca E, Bialer M. Critical aspects affecting cannabidiol oral bioavailability and metabolic elimination, and related clinical implications. CNS Drugs. 2020;34(8):795–800.

    CAS  PubMed  Google Scholar 

  8. Crockett J, Critchley D, Tayo B, Berwaerts J, Morrison G. A phase 1, randomized, pharmacokinetic trial of the effect of different meal compositions, whole milk, and alcohol on cannabidiol exposure and safety in healthy subjects. Epilepsia. 2020;61(2):267–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor L, Gidal B, Blakey G, Tayo B, Morrison G. A Phase I, randomized, double-blind, placebo-controlled, single ascending dose, multiple dose, and food effect trial of the safety, tolerability and pharmacokinetics of highly purified cannabidiol in healthy subjects. CNS Drugs. 2018;32(11):1053–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sato M, Narukawa M. Factors affecting intrasubject variability of PK exposure: absolute oral bioavailability and acidic nature of drugs. Int J Clin Pharmacol Ther. 2015;53(11):955–62.

    PubMed  Google Scholar 

  11. Agurell S, Carlsson S, Lindgren JE, Ohlsson A, Gillespie H, Hollister L. Interactions of delta 1-tetrahydrocannabinol with cannabinol and cannabidiol following oral administration in man. Assay of cannabinol and cannabidiol by mass fragmentography. Experientia. 1981;37(10):1090–2.

    CAS  PubMed  Google Scholar 

  12. Bialer M, Johannessen SI, Koepp MJ, Levy RH, Perucca E, Tomson T, et al. Progress report on new antiepileptic drugs: a summary of the fourteenth Eilat conference on new antiepileptic drugs and devices (EILAT XIV). II. Drugs in more advanced clinical development. Epilepsia. 2018;59(10):1842–66.

    PubMed  Google Scholar 

  13. Grotenhermen F. Pharmacokinetics and pharmacodynamics of cannabinoids. Clin Pharmacokinet. 2003;42(4):327–60.

    CAS  PubMed  Google Scholar 

  14. Millar SA, Stone NL, Yates AS, O'Sullivan SE. A systematic review on the pharmacokinetics of Cannabidiol in humans. Front Pharmacol. 2018;9:1365.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ohlsson A, Lindgren JE, Andersson S, Agurell S, Gillespie H, Hollister LE. Single-dose kinetics of deuterium-labelled cannabidiol in man after smoking and intravenous administration. Biomed Environ Mass Spectrom. 1986;13(2):77–83.

    CAS  PubMed  Google Scholar 

  16. Ohlsson A, Lindgren JE, Wahlen A, Agurell S, Hollister LE, Gillespie HK. Plasma delta-9 tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin Pharmacol Ther. 1980;28(3):409–16.

    CAS  PubMed  Google Scholar 

  17. Widman M, Agurell S, Ehrnebo M, Jones G. Binding of (+)- and (minus)-delta-1-tetrahydrocannabinols and (minus)-7-hydroxy-delta-1-tetrahydrocannabinol to blood cells and plasma proteins in man. J Pharm Pharmacol. 1974;26(11):914–6.

    CAS  PubMed  Google Scholar 

  18. Derendorf H, Schmidt S. Rowland and Tozer's Clinical Pharmacokinetics and Pharmacodynamics, 5th ed, Wolters Kluwer, Philadelphia, 2020, pp.134–7, 204–12 and 777–9

  19. Wilkinson GR, Shand DG. Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377–90.

    CAS  PubMed  Google Scholar 

  20. Manini AF, Yiannoulos G, Bergamaschi MM, Hernandez S, Olmedo R, Barnes AJ, et al. Safety and pharmacokinetics of oral cannabidiol when administered concomitantly with intravenous fentanyl in humans. J Addict Med. 2015;9(3):204–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Taylor L, Crockett J, Tayo B, Morrison G. A Phase 1, open-label, parallel-group, single-dose trial of the pharmacokinetics and safety of cannabidiol (CBD) in subjects with mild to severe hepatic impairment. J Clin Pharmacol. 2019;59(8):1110–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Morrison G, Crockett J, Blakey G, Sommerville K. A Phase 1, open-label, pharmacokinetic trial to investigate possible drug-drug interactions between clobazam, stiripentol, or valproate and cannabidiol in healthy subjects. Clin Pharmacol Drug Dev. 2019;8(8):1009–311.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Whalley BJ, Stott C, Gray RA, Jones NA. The human metabolite of cannabidiol, 7-hydroxy-cannabidiol, but not 7-carboxy-cannabidiol, is anticonvulsant in the maximal electroshock threshold test (MEST) in mouse [abstract]. American Epilepsy Society Annual Meeting, 1–5 December 2017, Washington, DC. https://www.aesnet.org/meetings_events/annual_meeting_abstracts/view/381222. Accessed 30 May 2020.

  24. Edwards GA, Porter CJ, Caliph SM, Khoo SM, Charman WN. Animal models for the study of intestinal lymphatic drug transport. Adv Drug Deliv Rev. 2001;50(1–2):45–60.

    CAS  PubMed  Google Scholar 

  25. Gershkovich P, Hoffman A. Uptake of lipophilic drugs by plasma derived isolated chylomicrons: linear correlation with intestinal lymphatic bioavailability. Eur J Pharm Sci. 2005;26(5):394–404.

    CAS  PubMed  Google Scholar 

  26. Charman WN, Porter CJH. Lipophilic prodrugs designed for intestinal lymphatic transport. Adv Drug Deliv Rev. 1996;19(2):149–69.

    CAS  Google Scholar 

  27. Brocks DR, Davies NM. Lymphatic drug absorption via the enterocytes: pharmacokinetic simulation, modeling, and considerations for optimal drug development. J Pharm Pharm Sci. 2018;21(1s):254s–s270270.

    PubMed  Google Scholar 

  28. Lee JB, Zgair A, Malec J, Kim TH, Kim MG, Ali J, et al. Lipophilic activated ester prodrug approach for drug delivery to the intestinal lymphatic system. J Control Release. 2018;286:10–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zgair A, Wong JC, Lee JB, Mistry J, Sivak O, Wasan KM, et al. Dietary fats and pharmaceutical lipid excipients increase systemic exposure to orally administered cannabis and cannabis-based medicines. Am J Transl Res. 2016;8(8):3448–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Trevaskis NL, Charman WN, Porter CJ. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update. Adv Drug Deliv Rev. 2008;60(6):702–16.

    CAS  PubMed  Google Scholar 

  31. Gershkovich P, Fanous J, Qadri B, Yacovan A, Amselem S, Hoffman A. The role of molecular physicochemical properties and apolipoproteins in association of drugs with triglyceride-rich lipoproteins: in-silico prediction of uptake by chylomicrons. J Pharm Pharmacol. 2009;61(1):31–9.

    CAS  PubMed  Google Scholar 

  32. Trevaskis NL, Kaminskas LM, Porter CJ. From sewer to saviour: targeting the lymphatic system to promote drug exposure and activity. Nat Rev Drug Discov. 2015;14(11):781–803.

    CAS  PubMed  Google Scholar 

  33. Zgair A, Lee JB, Wong JCM, Taha DA, Aram J, Di Virgilio D, et al. Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation. Sci Rep. 2017;7(1):14542.

    PubMed  PubMed Central  Google Scholar 

  34. Horst HJ, Holtje WJ, Dennis M, Coert A, Geelen J, Voigt KD. Lymphatic absorption and metabolism of orally administered testosterone undecanoate in man. Klin Wochenschr. 1976;54(18):875–9.

    CAS  PubMed  Google Scholar 

  35. Birnbaum AK, Karanam A, Marino SE, Barkley CM, Remmel RP, Roslawski M, et al. Food effect on pharmacokinetics of cannabidiol oral capsules in adult patients with refractory epilepsy. Epilepsia. 2019;60(8):1586–92.

    CAS  PubMed  Google Scholar 

  36. Trevaskis NL, Shackleford DM, Charman WN, Edwards GA, Gardin A, Appel-Dingemanse S, et al. Intestinal lymphatic transport enhances the post-prandial oral bioavailability of a novel cannabinoid receptor agonist via avoidance of first-pass metabolism. Pharm Res. 2009;26(6):1486–95.

    CAS  PubMed  Google Scholar 

  37. Odi R, Bibi D, Wager T, Bialer M. A perspective on the physicochemical and biopharmaceutic properties of marketed antiepileptic drugs—from phenobarbital to cenobamate and beyond. Epilepsia. 2020. https://doi.org/10.1111/epi.16597

    Article  CAS  Google Scholar 

  38. Kararli TT. Gastrointestinal absorption of drugs. Crit Rev Ther Drug Carrier Syst. 1989;6(1):39–86.

    CAS  PubMed  Google Scholar 

  39. Nakanishi T, Tamai I. Interaction of drug or food with drug transporters in intestine and liver. Curr Drug Metab. 2015;16(9):753–64.

    CAS  PubMed  Google Scholar 

  40. Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liver Dis. 2017;21(1):1–20.

    PubMed  Google Scholar 

  41. Trevaskis NL, Lee G, Escott A, Phang KL, Hong J, Cao E, et al. Intestinal lymph flow, and lipid and drug transport scale allometrically from pre-clinical species to humans. Front Physiol. 2020;11:458.

    PubMed  PubMed Central  Google Scholar 

  42. Hu L, Quach T, Han S, Lim SF, Yadav P, Senyschyn D, et al. Glyceride-mimetic prodrugs incorporating self-immolative spacers promote lymphatic transport, avoid first-pass metabolism, and enhance oral bioavailability. Angew Chem Int Ed Engl. 2016;55(44):13700–5.

    CAS  PubMed  Google Scholar 

  43. Tauber U, Schroder K, Dusterberg B, Matthes H. Absolute bioavailability of testosterone after oral administration of testosterone-undecanoate and testosterone. Eur J Drug Metab Pharmacokinet. 1986;11(2):145–9.

    CAS  PubMed  Google Scholar 

  44. Liao H, Gao Y, Lian C, Zhang Y, Wang B, Yang Y, et al. Oral absorption and lymphatic transport of baicalein following drug-phospholipid complex incorporation in self-microemulsifying drug delivery systems. Int J Nanomed. 2019;14:7291–306.

    CAS  Google Scholar 

  45. Tong Y, Zhang Q, Shi W, Wang J. Mechanisms of oral absorption improvement for insoluble drugs by the combination of phospholipid complex and SNEDDS. Drug Deliv. 2019;26(1):1155–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Barzaghi N, Crema F, Gatti G, Pifferi G, Perucca E. Pharmacokinetic studies on IdB 1016, a silybin- phosphatidylcholine complex, in healthy human subjects. Eur J Drug Metab Pharmacokinet. 1990;15(4):333–8.

    CAS  PubMed  Google Scholar 

  47. Schandalik R, Gatti G, Perucca E. Pharmacokinetics of silybin in bile following administration of silipide and silymarin in cholecystectomy patients. Arzneimittelforschung. 1992;42(7):964–8.

    CAS  PubMed  Google Scholar 

  48. Atsmon J, Cherniakov I, Izgelov D, Hoffman A, Domb AJ, Deutsch L, et al. PTL401, a new formulation based on pro-nano dispersion technology, improves oral cannabinoids bioavailability in healthy volunteers. J Pharm Sci. 2018;107(5):1423–9.

    CAS  PubMed  Google Scholar 

  49. Izgelov D, Davidson E, Barasch D, Regev A, Domb AJ, Hoffman A. Pharmacokinetic investigation of synthetic cannabidiol oral formulations in healthy volunteers. Eur J Pharm Biopharm. 2020. https://doi.org/10.1016/j.ejpb.2020.06.021.

    Article  PubMed  Google Scholar 

  50. Knaub K, Sartorius T, Dharsono T, Wacker R, Wilhelm M, Schon C. A novel self-emulsifying drug delivery system (SEDDS) based on VESIsorb(R) formulation technology improving the oral bioavailability of cannabidiol in healthy subjects. Molecules. 2019;24(16):2967.

    CAS  PubMed Central  Google Scholar 

  51. Swarnakar NK, Venkatesan N, Betageri G. Critical in vitro characterization methods of lipid-based formulations for oral delivery: a comprehensive review. AAPS PharmSciTech. 2018;20(1):16.

    PubMed  Google Scholar 

  52. Izgelov D, Domb AJ, Hoffman A. The effect of piperine on oral absorption of cannabidiol following acute vs. chronic administration. Eur J Pharm Sci. 2020;148:105313.

    CAS  PubMed  Google Scholar 

  53. Cherniakov I, Izgelov D, Barasch D, Davidson E, Domb AJ, Hoffman A. Piperine-pro-nanolipospheres as a novel oral delivery system of cannabinoids: pharmacokinetic evaluation in healthy volunteers in comparison to buccal spray administration. J Control Release. 2017;266:1–7.

    CAS  PubMed  Google Scholar 

  54. Warren CM, Chadha AS, Sicherer SH, Jiang J, Gupta RS. Prevalence and severity of sesame allergy in the United States. JAMA Netw Open. 2019;2(8):e199144.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meir Bialer.

Ethics declarations

The authors confirm they have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Funding

This work was not supported by any funding source.

Conflict of interest

Valentina Franco received consultancy fees from GW Pharma. PG has no conflicts of interest to disclose. EP received speaker’s or consultancy fees from Amicus Therapeutics, Arvelle, Biogen, Eisai, GW Pharma, Intas Pharmaceuticals, Laboratorios Bagò, Sanofi, Sun Pharma, UCB Pharma and Xenon Pharma. MB received speaker’s or consultancy fees from Alkaloid, Boehringer Ingelheim, Medison and US WorldMeds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco, V., Gershkovich, P., Perucca, E. et al. The Interplay Between Liver First-Pass Effect and Lymphatic Absorption of Cannabidiol and Its Implications for Cannabidiol Oral Formulations. Clin Pharmacokinet 59, 1493–1500 (2020). https://doi.org/10.1007/s40262-020-00931-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-020-00931-w

Navigation