Skip to main content
Log in

Physiologically Based Pharmacokinetic Modelling to Inform Development of Intramuscular Long-Acting Nanoformulations for HIV

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Antiretrovirals are currently used for the treatment and prevention of HIV infection. However, poor adherence and low tolerability of some existing oral formulations can hinder their efficacy. Long-acting (LA) injectable nanoformulations could help address these complications by simplifying antiretroviral administration. The aim of this study is to inform the optimisation of intramuscular LA formulations for eight antiretrovirals through physiologically based pharmacokinetic (PBPK) modelling.

Methods

A whole-body PBPK model was constructed using mathematical descriptions of molecular, physiological and anatomical processes defining pharmacokinetics. These models were validated against available clinical data and subsequently used to predict the pharmacokinetics of injectable LA formulations

Results

The predictions suggest that monthly intramuscular injections are possible for dolutegravir, efavirenz, emtricitabine, raltegravir, rilpivirine and tenofovir provided that technological challenges to control their release rate can be addressed.

Conclusions

These data may help inform the target product profiles for LA antiretroviral reformulation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. UNAIDS. AIDS by the numbers 2013. http://www.unaids.org/en/media/unaids/contentassets/documents/unaidspublication/2013/JC2571_AIDS_by_the_numbers_en.pdf. Accessed 20 Oct 2014.

  2. Palleja S, Ogden R, Hamy F, Vidal V, Klimkait T, Martin D, et al. In vitro anti-HIV efficacy of the chemokine receptor 5 (CCR5) antagonist TBR-652 in combination with four other classes of antiretroviral agents [poster no. 416]. 49th ICAAC; 12–15 Sep 2009; San Francisco.

  3. Okwundu CI, Uthman OA, Okoromah CAN. Antiretroviral pre-exposure prophylaxis (PrEP) for preventing HIV in high-risk individuals. Cochrane Database Syst Rev. 2012;(7):CD007189. http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD007189.pub3/abstract. Accessed 4 Dec 2014.

  4. Spreen WR, Margolis DA, Pottage JCJ. Long-acting injectable antiretrovirals for HIV treatment and prevention. Curr Opin HIV AIDS. 2013;8(6):565–71. doi:10.1097/COH.0000000000000002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Boffito M, Jackson A, Owen A, Becker S. New approaches to antiretroviral drug delivery: challenges and opportunities associated with the use of long-acting injectable agents. Drugs. 2014;74(1):7–13. doi:10.1007/s40265-013-0163-7.

    Article  CAS  PubMed  Google Scholar 

  6. van’t Klooster G, Hoeben E, Borghys H, Looszova A, Bouche M-P, van Velsen F, et al. Pharmacokinetics and disposition of rilpivirine (TMC278) nanosuspension as a long-acting injectable antiretroviral formulation. Antimicrob Agents Chemother. 2010;54(5):2042–50. doi:10.1128/aac.01529-09.

    Article  Google Scholar 

  7. Williams J, Sayles HR, Meza JL, Sayre P, Sandkovsky U, Gendelman HE, et al. Long-acting parenteral nanoformulated antiretroviral therapy: interest and attitudes of HIV-infected patients. Nanomedicine (Lond). 2013;8(11):1807–13. doi:10.2217/nnm.12.214.

    Article  CAS  Google Scholar 

  8. Siccardi M, Rajoli RKR, Curley P, Olagunju A, Moss D, Owen A. Physiologically based pharmacokinetic models for the optimization of antiretroviral therapy: recent progress and future perspective. Future Virol. 2013;8(9):871–90. doi:10.2217/fvl.13.67.

    Article  CAS  Google Scholar 

  9. Tegenge M, Mitkus R. A physiologically-based pharmacokinetic (PBPK) model of squalene-containing adjuvant in human vaccines. J Pharmacokinet Pharmacodyn. 2013;40(5):545–56. doi:10.1007/s10928-013-9328-y.

    Article  CAS  PubMed  Google Scholar 

  10. McDonald TO, Giardiello M, Martin P, Siccardi M, Liptrott NJ, Smith D, et al. Antiretroviral solid drug nanoparticles with enhanced oral bioavailability: production, characterization, and in vitro-in vivo correlation. Adv Healthc Mater. 2014;3(3):400–11. doi:10.1002/adhm.201300280.

    Article  CAS  PubMed  Google Scholar 

  11. Siccardi M, Almond L, Schipani A, Csajka C, Marzolini C, Wyen C, et al. Pharmacokinetic and pharmacodynamic analysis of efavirenz dose reduction using an in vitro–in vivo extrapolation model. Clin Pharmacol Ther. 2012;92(4):494–502. doi:10.1038/clpt.2012.61.

    Article  CAS  PubMed  Google Scholar 

  12. de Roche M, Siccardi M, Stoeckle M, Livio F, Back D, Battegay M, et al. Efavirenz in an obese HIV-infected patient––a report and an in vitro–in vivo extrapolation model indicate risk of underdosing. Antivir Ther. 2012;17(7):1381–4. doi:10.3851/imp2107.

    Article  PubMed  Google Scholar 

  13. Hyland R, Dickins M, Collins C, Jones H, Jones B. Maraviroc: in vitro assessment of drug–drug interaction potential. Br J Clin Pharmacol. 2008;66(4):498–507. doi:10.1111/j.1365-2125.2008.03198.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bosgra S, Eijkeren JV, Bos P, Zeilmaker M, Slob W. An improved model to predict physiologically based model parameters and their inter-individual variability from anthropometry. Crit Rev Toxicol. 2012;42(9):751–67. doi:10.3109/10408444.2012.709225.

    Article  PubMed  Google Scholar 

  15. Yu LX, Amidon GL. A compartmental absorption and transit model for estimating oral drug absorption. Int J Pharm. 1999;186(2):119–25. doi:10.1016/S0378-5173(99)00147-7.

    Article  CAS  PubMed  Google Scholar 

  16. Siccardi M, Olagunju A, Seden K, Ebrahimjee F, Rannard S, Back D, et al. Use of a physiologically-based pharmacokinetic model to simulate artemether dose adjustment for overcoming the drug-drug interaction with efavirenz. In Silico Pharmacol. 2013;1:4. doi:10.1186/2193-9616-1-4.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gertz M, Harrison A, Houston JB, Galetin A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab Dispos. 2010;38(7):1147–58. doi:10.1124/dmd.110.032649.

    Article  CAS  PubMed  Google Scholar 

  18. Barter ZE, Chowdry JE, Harlow JR, Snawder JE, Lipscomb JC, Rostami-Hodjegan A. Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metab Dispos. 2008;36(12):2405–9. doi:10.1124/dmd.108.021311.

    Article  CAS  PubMed  Google Scholar 

  19. Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies. 1. Mechanism-based prediction of volume of distribution. J Pharm Sci. 2002;91(1):129–56. doi:10.1002/jps.10005.

    Article  CAS  PubMed  Google Scholar 

  20. Peters S. Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin Pharmacokinet. 2008;47(4):261–75. doi:10.2165/00003088-200847040-00004.

    Article  CAS  PubMed  Google Scholar 

  21. GlaxoSmithKline. Summary of product characterisitics–Zinacef. 1979. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/zinacef_30/WC500127791.pdf. Accessed 17 Aug 2014.

  22. Duwal S, Schütte C, von Kleist M. Pharmacokinetics and pharmacodynamics of the reverse transcriptase inhibitor tenofovir and prophylactic efficacy against HIV-1 infection. PloS One. 2012;7(7):e40382. doi:10.1371/journal.pone.0040382.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Wang LH, Begley J, St Claire RL, Harris J, Wakeford C, Rousseau FS. Pharmacokinetic and pharmacodynamic characteristics of emtricitabine support its once daily dosing for the treatment of HIV infection. AIDS Res Hum Retrovir. 2004;20(11):1173–82. doi:10.1089/0889222042544965.

    Article  CAS  PubMed  Google Scholar 

  24. Feng J, Ly J, Myrick F, Goodman D, White K, Svarovskaia E, et al. The triple combination of tenofovir, emtricitabine and efavirenz shows synergistic anti-HIV-1 activity in vitro: a mechanism of action study. Retrovirology. 2009;6(1):1–16. doi:10.1186/1742-4690-6-44.

    Article  Google Scholar 

  25. Wilson JE, Martin JL, Borroto-Esoda K, Hopkins S, Painter G, Liotta DC, et al. The 5′-triphosphates of the (−) and (+) enantiomers of cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolane-5-yl]cytosine equally inhibit human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother. 1993;37(8):1720–2. doi:10.1128/aac.37.8.1720.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Abduljalil K, Cain T, Humphries H, Rostami-Hodjegan A. Deciding on success criteria for predictability of pharmacokinetic parameters from in vitro studies: an analysis based on in vivo observations. Drug Metab Dispos. 2014;. doi:10.1124/dmd.114.058099.

    PubMed  Google Scholar 

  27. Center for Drug Evaluation and Research. Clinical Pharmacology and Biopharmaceutics Review(s). Addendum to Ondqa Biopharmaceutics review. 2011. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202022Orig1s000ClinPharmR.pdf. Accessed 22 Oct 2014.

  28. Azijn H, Tirry I, Vingerhoets J, de Béthune M-P, Kraus G, Boven K, et al. TMC278, a next-generation nonnucleoside reverse transcriptase inhibitor (NNRTI), active against wild-type and NNRTI-Resistant HIV-1. Antimicrob Agents Chemother. 2010;54(2):718–27. doi:10.1128/aac.00986-09.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Highlights of prescribing information––REYATAZ. Bristol-Myers Squibb Company; 2014. http://packageinserts.bms.com/pi/pi_reyataz.pdf. Accessed 13 Aug 2014.

  30. Acosta EP, Limoli KL, Trinh L, Parkin NT, King JR, Weidler JM, et al. Novel method to assess antiretroviral target trough concentrations using in vitro susceptibility data. Antimicrob Agents Chemother. 2012;56(11):5938–45. doi:10.1128/aac.00691-12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Highlights of prescribing information––TIVICAY. Viiv Healthcare; 2013. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/204790lbl.pdf. Accessed 11 Oct 2014.

  32. Castellino S, Moss L, Wagner D, Borland J, Song I, Chen S, et al. Metabolism, excretion, and mass balance of the HIV-1 integrase inhibitor, dolutegravir, in humans. Antimicrob Agents Chemother. 2013;57:3536–46. doi:10.1128/aac.00292-13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Highlights of prescribing information––EMTRIVA. Gilead Sciences; 2013. http://www.gilead.com/~/media/Files/pdfs/medicines/hiv/emtriva/emtriva_pi.pdf. Accessed 12 Oct 2014.

  34. Villani P, Regazzi MB, Castelli F, Viale P, Torti C, Seminari E, et al. Pharmacokinetics of efavirenz (EFV) alone and in combination therapy with nelfinavir (NFV) in HIV-1 infected patients. Br J Clin Pharmacol. 1999;48(5):712–5. doi:10.1046/j.1365-2125.1999.00071.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kakuda TN, Schöller-Gyüre M, Workman C, Arasteh K, Pozniak AL, De Smedt G, et al. Single- and multiple-dose pharmacokinetics of etravirine administered as two different formulations in HIV-1-infected patients. Antivir Ther. 2008;13(5):655–61.

    CAS  PubMed  Google Scholar 

  36. Fayet Mello A, Buclin T, Franc C, Colombo S, Cruchon S, Guignard N. Cell disposition of raltegravir and newer antiretrovirals in HIV-infected patients: high inter-individual variability in raltegravir cellular penetration. J Antimicrob Chemother. 2011;66(7):1573–81. doi:10.1093/jac/dkr151.

    Article  CAS  PubMed  Google Scholar 

  37. Yilmaz A, Gisslén M, Spudich S, Lee E, Jayewardene A, Aweeka F, et al. Raltegravir cerebrospinal fluid concentrations in HIV-1 infection. PloS One. 2009;4(9):e6877. doi:10.1371/journal.pone.0006877.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Summary of product characteristics––VIREAD. Gilead Sciences; 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000419/WC500051737.pdf. Accessed 15 Aug 2014.

  39. Dolgin E. Long-acting HIV drugs advanced to overcome adherence challenge. Nat Med. 2014;20(4):323–4. doi:10.1038/nm0414-323.

    Article  CAS  PubMed  Google Scholar 

  40. Jackson AGA, Else LJ, Mesquita PMM, Egan D, Back DJ, Karolia Z, et al. A compartmental pharmacokinetic evaluation of long-acting rilpivirine in HIV-negative volunteers for pre-exposure prophylaxis. Clin Pharmacol Ther. 2014;96(3):314–23. doi:10.1038/clpt.2014.118.

    Article  CAS  PubMed  Google Scholar 

  41. Martin P, Giardiello M, McDonald TO, Rannard SP, Owen A. Mediation of in vitro cytochrome P450 activity by common pharmaceutical excipients. Mol Pharm. 2013;10(7):2739–48. doi:10.1021/mp400175n.

    Article  CAS  PubMed  Google Scholar 

  42. Product information––TIVICAY. ViiV Healthcare Pty Ltd; 2014. http://www.medicines.org.au/files/viptivic.pdf. Accessed 20 Oct 2014.

  43. Siccardi M, Marzolini C, Seden K, Almond L, Kirov A, Khoo S, et al. Prediction of drug–drug interactions between various antidepressants and efavirenz or boosted protease inhibitors using a physiologically based pharmacokinetic modelling approach. Clin Pharmacokinet. 2013;52(7):583–92. doi:10.1007/s40262-013-0056-7.

    Article  CAS  PubMed  Google Scholar 

  44. Schöller-Gyüre M, Kakuda T, Raoof A, Smedt G, Hoetelmans RW. Clinical pharmacokinetics and pharmacodynamics of etravirine. Clin Pharmacokinet. 2009;48(9):561–74. doi:10.2165/10895940-000000000-00000.

    Article  PubMed  Google Scholar 

  45. Moss DM, Siccardi M, Back DJ, Owen A. Predicting intestinal absorption of raltegravir using a population-based ADME simulation. J Antimicrob Chemother. 2013;68:1627–34. doi:10.1093/jac/dkt084.

    Article  CAS  PubMed  Google Scholar 

  46. Wajima T, Kubota R. Pharmacokinetic/pharmacodynamic modeling and long-term simulation of dolutegravir (DTG, S/GSK1349572) in integrase resistant patients with a simple viral dynamic model [poster]. 20th Population Approach Group in Europe (PAGE); 7–10 Jun 2011; Athens.

  47. Valade E, Treluyer J-M, Bouazza N, Ghosn J, Foissac F, Benaboud S, et al. Population pharmacokinetics of emtricitabine in HIV-1-infected adult patients. Antimicrob Agents Chemother. 2014;58(4):2256–61. doi:10.1128/aac.02058-13.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Baheti G, Kiser JJ, Havens PL, Fletcher CV. Plasma and intracellular population pharmacokinetic analysis of tenofovir in HIV-1-infected patients. Antimicrob Agents Chemother. 2011;55(11):5294–9. doi:10.1128/aac.05317-11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Colombo S, Buclin T, Cavassini M, Décosterd LA, Telenti A, Biollaz J, et al. Population pharmacokinetics of atazanavir in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother. 2006;50(11):3801–8. doi:10.1128/aac.00098-06.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Laufer R, Paz OG, Di Marco A, Bonelli F, Monteagudo E, Summa V, et al. Quantitative prediction of human clearance guiding the development of raltegravir (MK-0518, Isentress) and related HIV integrase inhibitors. Drug Metabol Dispos. 2009;37(4):873–83. doi:10.1124/dmd.108.023804.

    Article  CAS  Google Scholar 

  51. Kiser J, Carten M, Aquilante C, Anderson P, Wolfe P, King T, et al. The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin Pharmacol Ther. 2007;83(2). doi:10.1038/sj.clpt.6100269.

  52. Reese MJ, Savina PM, Generaux GT, Tracey H, Humphreys JE, Kanaoka E, et al. In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metabol Dispos. 2013;41(2):353–61. doi:10.1124/dmd.112.048918.

    Article  CAS  Google Scholar 

  53. Yanakakis LJ, Bumpus NN. Biotransformation of the antiretroviral drug etravirine: metabolite identification, reaction phenotyping, and characterization of autoinduction of cytochrome P450-dependent metabolism. Drug Metab Dispos. 2012;40(4):803–14. doi:10.1124/dmd.111.044404.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Institutes of Health (AI 114405-01).

Conflict of interest

Andrew Owen has received research funding from Merck, Pfizer and AstraZeneca, consultancy from Merck and Norgine, and is a co-inventor of patents relating to HIV nanomedicines. Marco Siccardi has received research funding from ViiV and Janssen. David J. Back is a board member for Abbvie, Boehringer Ingelheim, Gilead, Janssen, Merck and ViiV. He receives consulting or advisor fees from Abbvie, Boehringer Ingelheim, Gilead, Janssen, Merck and ViiV. He also received research funding from Abbvie, Boehringer Ingelheim, BMS, Gilead, Janssen, Merck and ViiV. Charles Flexner received consulting or advisor fees from Abbvie, Boehringer Ingelheim, Bristol Myers-Squibb, Gilead, GlaxoSmithKline, Merck and ViiV. Rajith K.R. Rajoli, Steve Rannard and Caren L. Freel Meyers have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Siccardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajoli, R.K.R., Back, D.J., Rannard, S. et al. Physiologically Based Pharmacokinetic Modelling to Inform Development of Intramuscular Long-Acting Nanoformulations for HIV. Clin Pharmacokinet 54, 639–650 (2015). https://doi.org/10.1007/s40262-014-0227-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0227-1

Keywords

Navigation