Skip to main content
Log in

Liraglutide: New Perspectives for the Treatment of Polycystic Ovary Syndrome

  • Review Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome is a complex and heterogenous disorder involving multiple organ systems and different molecular pathways. It is tightly associated with obesity and especially abdominal obesity. As body weight reduction is the main modifiable risk factor for polycystic ovary syndrome, therapeutic approaches in overweight or obese women with polycystic ovary syndrome have been developed. Liraglutide is a glucagon-like peptide-1 receptor agonist that promotes sustained weight loss, as well as abdominal fat reduction, in individuals with obesity, prediabetes, and type 2 diabetes mellitus. The majority of current clinical studies have demonstrated that liraglutide therapy achieved significant reductions in body weight, body mass index, and abdominal circumference in overweight and obese women with polycystic ovary syndrome. Liraglutide therapy promoted significant improvements in free testosterone and sex hormone-binding globulin levels in some studies. Important metabolic and hormonal improvements were also reported after the combination of liraglutide with metformin. Increased menstrual frequency, as well as potential positive effects in reproduction, were described. However, the small number of participants, short duration, and low daily liraglutide dose are some of the main limitations of these studies. Larger and longer, multi-centred, double-blind, placebo-controlled trials of liraglutide monotherapy or combination therapy, with prolonged post-interventional monitoring, are crucially anticipated. Metabolic, hormonal, and reproductive primary outcomes should be uniformly addressed, to tailor future targeted treatment approaches, according to the patient phenotype and needs. This will improve long-term therapeutic outcomes in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mahalingaiah S, Diamanti-Kandarakis E. Targets to treat metabolic syndrome in polycystic ovary syndrome. Expert Opin Ther Targets. 2015;19:1561–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am J Obstet Gynecol. 1935;29:181–91.

    Google Scholar 

  3. Zawadzki J, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A, Givens J, Haseltine F, Merriam G, editors. Polycystic ovary syndrome. Cambridge: Blackwell Scientific Publications; 1992. p. 377–384.

    Google Scholar 

  4. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25.

    Google Scholar 

  5. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab. 2006;91:4237–45.

    CAS  PubMed  Google Scholar 

  6. Balen AH, Laven JS, Tan SL, Dewailly D. Ultrasound assessment of the polycystic ovary: international consensus definitions. Hum Reprod Update. 2003;9:505–14.

    PubMed  Google Scholar 

  7. Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37:467–520.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev. 2015;36:487–525.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Diamanti-Kandarakis E. Insulin resistance in PCOS. Endocrine. 2006;30:13–7.

    CAS  PubMed  Google Scholar 

  10. Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes. 1989;38:1165–74.

    CAS  PubMed  Google Scholar 

  11. Diamanti-Kandarakis E. Role of obesity and adiposity in polycystic ovary syndrome. Int J Obes (Lond). 2007;31(Suppl. 2):S8–13 (discussion S31–2).

    Google Scholar 

  12. Papaetis GS, Papakyriakou P, Panagiotou TN. Central obesity, type 2 diabetes and insulin: exploring a pathway full of thorns. Arch Med Sci. 2015;11:463–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18:618–37.

    CAS  PubMed  Google Scholar 

  14. Papaetis GS, Orphanidou D, Panagiotou TN. Thiazolidinediones and type 2 diabetes: from cellular targets to cardiovascular benefit. Curr Drug Targets. 2011;12:1498–512.

    CAS  PubMed  Google Scholar 

  15. Robinson S, Kiddy D, Gelding SV, Willis D, Niththyananthan R, Bush A, et al. The relationship of insulin insensitivity to menstrual pattern in women with hyperandrogenism and polycystic ovaries. Clin Endocrinol (Oxf). 1993;39:351–5.

    CAS  Google Scholar 

  16. Legro RS, Dodson WC, Kris-Etherton PM, et al. Randomized controlled trial of preconception interventions in infertile women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2015;100:4048–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Conway G, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Franks S, Gambineri A, et al. The polycystic ovary syndrome: a position statement from the European Society of Endocrinology. Eur J Endocrinol. 2014;171:P1–29.

    CAS  PubMed  Google Scholar 

  18. Vassilatou E. Nonalcoholic fatty liver disease and polycystic ovary syndrome. World J Gastroenterol. 2014;20:8351–63.

    PubMed  PubMed Central  Google Scholar 

  19. Horton R, Tait JF. Androstenedione production and interconversion rates measured in peripheral blood and studies on the possible site of its conversion to testosterone. J Clin Investig. 1966;45:301–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kirschner MA, Bardin CW. Androgen production and metabolism in normal and virilized women. Metabolism. 1972;21:667–88.

    CAS  PubMed  Google Scholar 

  21. Ehrmann DA, Barnes RB, Rosenfield RL. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr Rev. 1995;16:322–53.

    CAS  PubMed  Google Scholar 

  22. Nelson VL, Qin KN, Rosenfield RL, Wood JR, Penning TM, Legro RS, et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2001;86:5925–33.

    CAS  PubMed  Google Scholar 

  23. Coffler MS, Patel K, Dahan MH, Malcom PJ, Kawashima T, Deutsch R, et al. Evidence for abnormal granulosa cell responsiveness to follicle-stimulating hormone in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88:1742–7.

    CAS  PubMed  Google Scholar 

  24. Wilson EA, Erickson GF, Zarutski P, Finn AE, Tulchinsky D, Ryan KJ. Endocrine studies of normal and polycystic ovarian tissues in vitro. Am J Obstet Gynecol. 1979;134:56–63.

    CAS  PubMed  Google Scholar 

  25. Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA. Androgens stimulate early stages of follicular growth in the primate ovary. J Clin Investig. 1998;101:2622–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Weil S, Vendola K, Zhou J, Bondy CA. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J Clin Endocrinol Metab. 1999;84:2951–6.

    CAS  PubMed  Google Scholar 

  27. Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update. 2008;14:367–78.

    CAS  PubMed  Google Scholar 

  28. Azziz R, Black V, Hines GA, Fox LM, Boots LR. Adrenal androgen excess in the polycystic ovary syndrome: sensitivity and responsivity of the hypothalamic–pituitary–adrenal axis. J Clin Endocrinol Metab. 1998;83:2317–23.

    CAS  PubMed  Google Scholar 

  29. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33:981–1030.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu XK, Zhou SY, Liu JX, Pöllänen P, Sallinen K, Mäkinen M, et al. Selective ovary resistance to insulin signalling in women with polycystic ovary syndrome. Fertil Steril. 2003;80:954–65.

    PubMed  Google Scholar 

  31. Barbieri R, Makris A, Randall R, Daniels G, Kistner R, Ryan K. Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J Clin Endocrinol Metab. 1986;62:904–10.

    CAS  PubMed  Google Scholar 

  32. Ciaraldi TP, Aroda V, Mudaliar S, Chang RJ, Henry RR. Polycystic ovary syndrome is associated with tissue-specific differences in insulin resistance. J Clin Endocrinol Metab. 2009;94:157–63.

    CAS  PubMed  Google Scholar 

  33. Franks S, Gilling-Smith C, Watson H, Willis D. Insulin action in the normal and polycystic ovary. Endocrinol Metab Clin N Am. 1999;28:361–78.

    CAS  Google Scholar 

  34. Cara JF, Rosenfield RL. Insulin-like growth factor I and insulin potentiate luteinizing hormone-induced androgen synthesis by rat ovarian theca-interstitial cells. Endocrinology. 1988;123:733–9.

    CAS  PubMed  Google Scholar 

  35. Rosenfield RL, Barnes RB, Ehrmann DA. Studies of the nature of 17-hydroxyprogesterone hyperresponsiveness to gonadotropin-releasing hormone agonist challenge in functional ovarian hyperandrogenism. J Clin Endocrinol Metab. 1994;79:1686–92.

    CAS  PubMed  Google Scholar 

  36. Hernandez ER, Resnick CE, Holtzclaw WD, Payne DW, Adashi EY. Insulin as a regulator of androgen biosynthesis by cultured rat ovarian cells: cellular mechanism (s) underlying physiological and pharmacological hormonal actions. Endocrinology. 1988;122:2034–43.

    CAS  PubMed  Google Scholar 

  37. Comim FV, Teerds K, Hardy K, Franks S. Increased protein expression of LHCG receptor and 17α-hydroxylase/17-20-lyase in human polycystic ovaries. Hum Reprod. 2013;28:3086–92.

    CAS  PubMed  Google Scholar 

  38. Nestler JE, Powers LP, Matt DW, Steingold KA, Plymate SR, Rittmaster RS, et al. A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. J Clin Endocrinol Metab. 1991;72:83–9.

    CAS  PubMed  Google Scholar 

  39. Moll GW Jr, Rosenfield RL. Testosterone binding and free plasma androgen concentrations under physiological conditions: characterization by flow dialysis technique. J Clin Endocrinol Metab. 1979;49:730–3.

    CAS  PubMed  Google Scholar 

  40. Lovejoy JC, Bray GA, Bourgeois MO, Macchiavelli R, Rood JC, Greeson C, et al. Exogenous androgens influence body composition and regional body fat distribution in obese postmenopausal women: a clinical research center study. J Clin Endocrinol Metab. 1996;81:2198–203.

    CAS  PubMed  Google Scholar 

  41. Romualdi D, Giuliani M, Draisci G, Costantini B, Cristello F, Lanzone A, et al. Pioglitazone reduces the adrenal androgen response to corticotropin-releasing factor without changes in ACTH release in hyperinsulinemic women with polycystic ovary syndrome. Fertil Steril. 2007;88:131–8.

    CAS  PubMed  Google Scholar 

  42. Dumont A, Robin G, Catteau-Jonard S, Dewailly D. Role of anti-Müllerian hormone in pathophysiology, diagnosis and treatment of polycystic ovary syndrome: a review. Reprod Biol Endocrinol. 2015;13:137.

    PubMed  PubMed Central  Google Scholar 

  43. Creutzfeldt W. The incretin concept today. Diabetologia. 1979;16:75–85.

    CAS  PubMed  Google Scholar 

  44. Papaetis GS. Incretin-based therapies in prediabetes: current evidence and future perspectives. World J Diabetes. 2014;5:817–34.

    PubMed  PubMed Central  Google Scholar 

  45. Holst JJ. Glucagon-like peptide-1: from extract to agent. The Claude Bernard Lecture, 2005. Diabetologia. 2006;49:253–60.

    CAS  PubMed  Google Scholar 

  46. Nishiyama Y, Hasegawa T, Fujita S, Iwata N, Nagao S, Hosoya T, et al. Incretins modulate progesterone biosynthesis by regulating bone morphogenetic protein activity in rat granulosa cells. J Steroid Biochem Mol Biol. 2018;178:82–8.

    CAS  PubMed  Google Scholar 

  47. Jensterle M, Janez A, Fliers E, DeVries JH, Vrtacnik-Bokal E, Siegelaar SE. The role of glucagon-like peptide-1 in reproduction: from physiology to therapeutic perspective. Hum Reprod Update. 2019;25:504–17.

    PubMed  Google Scholar 

  48. Maclusky N, Cook S, Scrocchi L, Shin J, Kim J, Vaccarino F, et al. Neuroendocrine function and response to stress in mice with complete disruption of glucagon-like peptide-1 receptor signaling. Endocrinology. 2000;141:752–62.

    CAS  PubMed  Google Scholar 

  49. Moffett RC, Naughton V. Emerging role of GIP and related gut hormones in fertility and PCOS. Peptides. 2020;125:170233.

    CAS  PubMed  Google Scholar 

  50. Zhu L, Zhou J, Pan Y, Lv J, Liu Y, Yu S, et al. Glucagon-like peptide-1 receptor expression and its functions are regulated by androgen. Biomed Pharmacother. 2019;120:109555.

    CAS  PubMed  Google Scholar 

  51. Vrbikova J, Hill M, Bendlova B, Grimmichova T, Dvorakova K, Vondra K, et al. Incretin levels in polycystic ovary syndrome. Eur J Endocrinol. 2008;159:121–7.

    CAS  PubMed  Google Scholar 

  52. Aydin K, Arusoglu G, Koksal G, Cinar N, Aksoy DY, Yildiz BO. Fasting and postprandial glucagon like peptide 1 and oral contraception in polycystic ovary syndrome. Clin Endocrinol (Oxf). 2014;81:588–92.

    CAS  Google Scholar 

  53. Lin T, Li S, Xu H, Zhou H, Feng R, Liu W, et al. Gastrointestinal hormone secretion in women with polycystic ovary syndrome: an observational study. Hum Reprod. 2015;30:2639–44.

    CAS  PubMed  Google Scholar 

  54. Gama R, Norris F, Wright J, Morgan L, Hampton S, Watkins S, et al. The entero-insular axis in polycystic ovarian syndrome. Ann Clin Biochem. 1996;33:190–5.

    PubMed  Google Scholar 

  55. Pontikis C, Yavropoulou MP, Toulis KA, Kotsa K, Kazakos K, Papazisi A, et al. The incretin effect and secretion in obese and lean women with polycystic ovary syndrome: a pilot study. J Womens Health (Larchmt). 2011;20:971–6.

    Google Scholar 

  56. Svendsen PF, Nilas L, Madsbad S, Holst JJ. Incretin hormone secretion in women with polycystic ovary syndrome: roles of obesity, insulin sensitivity, and treatment with metformin. Metabolism. 2009;58:586–93.

    CAS  PubMed  Google Scholar 

  57. Cassar S, Teede HJ, Harrison CL, Joham AE, Moran LJ, Stepto NK. Biomarkers and insulin sensitivity in women with polycystic ovary syndrome: characteristics and predictive capacity. Clin Endocrinol (Oxf). 2015;83:50–8.

    CAS  Google Scholar 

  58. Ferjan S, Jensterle M, Oblak T, Zitnik IP, Marc J, Goricar K, et al. An impaired glucagon-like peptide-1 response is associated with prediabetes in polycystic ovary syndrome with obesity. J Int Med Res. 2019;47:4691–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol. 2012;8:728–42.

    CAS  PubMed  Google Scholar 

  60. Russell-Jones D. Molecular, pharmacological and clinical aspects of liraglutide, a once-daily human GLP-1 analogue. Mol Cell Endocrinol. 2009;297:137–40.

    CAS  PubMed  Google Scholar 

  61. Knudsen LB. Liraglutide: the therapeutic promise from animal models. Int J Clin Pract Suppl. 2010;167:4–11.

    Google Scholar 

  62. Papaetis GS. Liraglutide therapy in a prediabetic state: rethinking the evidence. Curr Diabetes Rev. 2019. https://doi.org/10.2174/1573399816666191230113446.

    Article  Google Scholar 

  63. Davies MJ, Bergenstal R, Bode B, Kushner RF, Lewin A, Skjøth TV, et al. Efficacy of liraglutide for weight loss among patients with type 2 diabetes: the SCALE diabetes randomized clinical trial. JAMA. 2015;18(314):687–99.

    Google Scholar 

  64. Lamos EM, Malek R, Davis SN. GLP-1 receptor agonists in the treatment of polycystic ovary syndrome. Expert Rev Clin Pharmacol. 2017;10:401–8.

    CAS  PubMed  Google Scholar 

  65. Tzotzas T, Karras SN, Katsiki N. Glucagon-like peptide-1 (GLP-1) receptor agonists in the treatment of obese women with polycystic ovary syndrome. Curr Vasc Pharmacol. 2017;15:218–29.

    CAS  PubMed  Google Scholar 

  66. Legro RS. Obesity and PCOS: implications for diagnosis and treatment. Semin Reprod Med. 2012;30:496–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Escobar-Morreale HF, Botella-Carretero JI, Alvarez-Blasco F, Sancho J, San Millán JL. The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery. J Clin Endocrinol Metab. 2005;90:6364–9.

    CAS  PubMed  Google Scholar 

  68. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33:1602–18.

    PubMed  PubMed Central  Google Scholar 

  69. Hoang V, Bi J, Mohankumar SM, Vyas AK. Liraglutide improves hypertension and metabolic perturbation in a rat model of polycystic ovarian syndrome. PLoS ONE. 2015;10:e0126119.

    PubMed  PubMed Central  Google Scholar 

  70. Torres Fernandez ED, Huffman AM, Syed M, Romero DG, Yanes Cardozo LL. Effect of GLP-1 receptor agonists in the cardiometabolic complications in a rat model of postmenopausal PCOS. Endocrinology. 2019;160:2787–99.

    PubMed  PubMed Central  Google Scholar 

  71. Singh A, Fernandes JRD, Chhabra G, Krishna A, Banerjee A. Liraglutide modulates adipokine expression during adipogenesis, ameliorating obesity, and polycystic ovary syndrome in mice. Endocrine. 2019;64:349–66.

    CAS  PubMed  Google Scholar 

  72. Heppner KM, Baquero AF, Bennett CM, Lindsley SR, Kirigiti MA, Bennett B, et al. GLP-1R signaling directly activates arcuate nucleus kisspeptin action in brain slices but does not rescue luteinizing hormone inhibition in ovariectomized mice during negative energy balance. eNeuro. 2017. https://doi.org/10.1523/ENEURO.0198-16.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jensterle SM, Kocjan T, Pfeifer M, Kravos NA, Janez A. Short-term combined treatment with liraglutide and metformin leads to significant weight loss in obese women with polycystic ovary syndrome and previous poor response to metformin. Eur J Endocrinol. 2014;170:451–9.

    Google Scholar 

  74. Jensterle M, Kocjan T, Kravos NA, Pfeifer M, Janez A. Short-term intervention with liraglutide improved eating behavior in obese women with polycystic ovary syndrome. Endocr Res. 2015;40:133–8.

    CAS  PubMed  Google Scholar 

  75. Jensterle M, Goricar K, Janez A. Metformin as an initial adjunct to low-dose liraglutide enhances the weight-decreasing potential of liraglutide in obese polycystic ovary syndrome: randomized control study. Exp Ther Med. 2016;11:1194–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Jensterle M, Kravos NA, Pfeifer M, Kocjan T, Janez A. A 12-week treatment with the long-acting glucagon-like peptide 1 receptor agonist liraglutide leads to significant weight loss in a subset of obese women with newly diagnosed polycystic ovary syndrome. Hormones (Athens). 2015;14:81–90.

    Google Scholar 

  77. Palomba S, Kurzthaler D, Hadziomerovic-Pekic D, Wildt L, Seeber BE. Metformin induces a prompt decrease in LH-stimulated testosterone response in women with PCOS independent of its insulin-sensitizing effects. Reprod Biol Endocrinol. 2014;12:98.

    Google Scholar 

  78. Jensterle M, Salamun V, Kocjan T, Vrtacnik Bokal E, Janez A. Short term monotherapy with GLP-1 receptor agonist liraglutide or PDE 4 inhibitor roflumilast is superior to metformin in weight loss in obese PCOS women: a pilot randomized study. J Ovarian Res. 2015;8:32.

    PubMed  PubMed Central  Google Scholar 

  79. Wouters EF, Bredenbröker D, Teichmann P, Brose M, Rabe KF, Fabbri LM, et al. Effect of the phosphodiesterase 4 inhibitor roflumilast on glucose metabolism in patients with treatment-naive, newly diagnosed type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97:E1720–E17251725.

    CAS  PubMed  Google Scholar 

  80. Jensterle M, Kravos NA, Goričar K, Janez A. Short-term effectiveness of low dose liraglutide in combination with metformin versus high dose liraglutide alone in treatment of obese PCOS: randomized trial. BMC Endocr Disord. 2017;17:5.

    PubMed  PubMed Central  Google Scholar 

  81. Palomba S, Falbo A, Zullo F, Orio F Jr. Evidence-based and potential benefits of metformin in the polycystic ovary syndrome: a comprehensive review. Endocr Rev. 2009;30:1–50.

    CAS  PubMed  Google Scholar 

  82. Diamanti-Kandarakis E, Christakou CD, Kandaraki E, Economou FN. Metformin: an old medication of new fashion: evolving new molecular mechanisms and clinical implications in polycystic ovary syndrome. Eur J Endocrinol. 2010;162:193–21212.

    CAS  PubMed  Google Scholar 

  83. Ferjan S, Janez A, Jensterle M. Dipeptidyl peptidase-4 inhibitor sitagliptin prevented weight regain in obese women with polycystic ovary syndrome previously treated with liraglutide: a pilot randomized study. Metab Syndr Relat Disord. 2017;15:515–20.

    CAS  PubMed  Google Scholar 

  84. Salamun V, Jensterle M, Janez A, Vrtacnik B. Liraglutide increases IVF pregnancy rates in obese PCOS women with poor response to first-line reproductive treatments: a pilot randomized study. Eur J Endocrinol. 2018;179:1–11.

    CAS  PubMed  Google Scholar 

  85. Tso LO, Costello MF, Albuquerque LE, Andriolo RB, Macedo CR. Metformin treatment before and during IVF or ICSI in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2014;2014(11):CD006105.

    PubMed Central  Google Scholar 

  86. Kahal H, Aburima A, Ungvari T, Rigby AS, Coady AM, Vince RV, et al. The effects of treatment with liraglutide on atherothrombotic risk in obese young women with polycystic ovary syndrome and controls. BMC Endocr Disord. 2015;15:14.

    PubMed  PubMed Central  Google Scholar 

  87. Kahal H, Abouda G, Rigby AS, Coady AM, Kilpatrick ES, Atkin SL. Glucagon-like peptide-1 analogue, liraglutide, improves liver fibrosis markers in obese women with polycystic ovary syndrome and nonalcoholic fatty liver disease. Clin Endocrinol (Oxford). 2014;81:523–8.

    CAS  Google Scholar 

  88. Kahal H, Kilpatrick E, Rigby A, Coady A, Atkin S. The effects of treatment with liraglutide on quality of life and depression in young obese women with PCOS and controls. Gynecol Endocrinol. 2019;35:142–5.

    CAS  PubMed  Google Scholar 

  89. Nylander M, Frøssing S, Clausen HV, Kistorp C, Faber J, Skouby SO. Effects of liraglutide on ovarian dysfunction in polycystic ovary syndrome: a randomized clinical trial. Reprod Biomed Online. 2017;35:121–7.

    CAS  PubMed  Google Scholar 

  90. Frøssing S, Nylander M, Chabanova E, Frystyk J, Holst JJ, Kistorp C, et al. Effect of liraglutide on ectopic fat in polycystic ovary syndrome: a randomized clinical trial. Diabetes Obes Metab. 2018;20:215–8.

    PubMed  Google Scholar 

  91. Nylander M, Frøssing S, Kistorp C, Faber J, Skouby SO. Liraglutide in polycystic ovary syndrome: a randomized trial, investigating effects on thrombogenic potential. Endocr Connect. 2017;6:89–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Frøssing S, Nylander M, Aziz M, Skouby SO, Kistorp C, Faber J. Atrial natriuretic peptide, copeptin and adrenomedullin levels in polycystic ovary syndrome: a case–control study. Gynecol Endocrinol. 2017;33:30–3.

    PubMed  Google Scholar 

  93. Rasmussen CB, Lindenberg S. The effect of liraglutide on weight loss in women with polycystic ovary syndrome: an observational study. Front Endocrinol (Lausanne). 2014;5:140.

    Google Scholar 

  94. Niafar M, Pourafkari L, Porhomayon J, Nader N. A systematic review of GLP-1 agonists on the metabolic syndrome in women with polycystic ovaries. Arch Gynecol Obstet. 2016;293:509–15.

    CAS  PubMed  Google Scholar 

  95. Han Y, Li Y, He B. GLP-1 receptor agonists versus metformin in PCOS: a systematic review and meta-analysis. Reprod Biomed Online. 2019;39:332–42.

    CAS  PubMed  Google Scholar 

  96. Gao LH, Zhang CL, Liu XY, Liu J, Zhong CF. Pilot clinical study of the efficacy of liraglutide in treating polycystic ovary syndrome patients with type 2 diabetes mellitus. Clin Focus. 2016;31:539–42.

    Google Scholar 

  97. Wang FF, Wu Y, Zhu YH, Ding T, Batterham RL, Qu F, et al. Pharmacologic therapy to induce weight loss in women who have obesity/overweight with polycystic ovary syndrome: a systematic review and network meta-analysis. Obes Rev. 2018;19:1424–45.

    PubMed  Google Scholar 

  98. Durmus U, Duran C, Ecirli S. Visceral adiposity index levels in overweight and/or obese, and non-obese patients with polycystic ovary syndrome and its relationship with metabolic and inflammatory parameters. J Endocrinol Investig. 2017;40:487–97.

    CAS  Google Scholar 

  99. Glueck CJ, Papanna R, Wang P, Goldenberg N, Sieve-Smith L. Incidence and treatment of metabolic syndrome in newly referred women with confirmed polycystic ovarian syndrome. Metabolism. 2003;52:908–15.

    CAS  PubMed  Google Scholar 

  100. Reid TS. Practical use of glucagon-like-peptide-1 receptor agonists therapy in primary care. Clin Diabetes. 2013;31:148–57.

    Google Scholar 

  101. Pyke C, Heller RS, Kirk RK, Ørskov C, Reedtz-Runge S, Kaastrup P, et al. GLP-1 receptor localization in monkey and human tissue: novel distribution revealed with extensively validated monoclonal antibody. Endocrinology. 2014;155:1280–90.

    PubMed  Google Scholar 

  102. Kumarathurai P, Anholm C, Larsen BS, Olsen RH, Madsbad S, Kristiansen O, et al. Effects of liraglutide on heart rate and heart rate variability: a randomized, double-blind, placebo-controlled crossover study. Diabetes Care. 2017;40:117–24.

    PubMed  Google Scholar 

  103. Drucker DJ. The ascending GLP-1 road from clinical safety to reduction of cardiovascular complications. Diabetes. 2018;67:1710–9.

    CAS  PubMed  Google Scholar 

  104. Greco D. Normal pregnancy outcome after first-trimester exposure to liraglutide in a woman with type 2 diabetes. Diabet Med. 2015;32:e29–30.

    CAS  PubMed  Google Scholar 

  105. Younes ST, Maeda KJ, Sasser J, Ryan MJ. The glucagon-like peptide 1 receptor agonist liraglutide attenuates placental ischemia-induced hypertension. Am J Physiol Heart Circ Physiol. 2020;318:H72–H7777.

    CAS  PubMed  Google Scholar 

  106. Liu X, Zhang Y, Zheng S-Y, Lin R, Xie Y-J, Chen H, et al. Efficacy of exenatide on weight loss, metabolic parameters and pregnancy in overweight/obese polycystic ovary syndrome. Clin Endocrinol (Oxf). 2017;87:767–74.

    CAS  Google Scholar 

  107. Jensterle M, Pirš B, Goričar K, Dolžan V, Janež A. Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of liraglutide in obese women with PCOS: a pilot study. Eur J Clin Pharmacol. 2015;71:817–24.

    CAS  PubMed  Google Scholar 

  108. ClinicalTrials.gov. Liraglutide 3 mg (Saxenda) on weight, body composition, hormonal and metabolic parameters in obese women with PCOS (SAXAPCOS). https://clinicaltrials.gov/ct2/show/NCT03480022?term=liraglutide&cond=PCOS&draw=1&rank=5. Accessed 18 Jun 2020.

  109. Whitten JS. Liraglutide (Saxenda) for weight loss. Am Fam Physician. 2016;94:161–6.

    PubMed  Google Scholar 

  110. Papamargaritis D, Al-Najim W, Lim J, Crane J, Lean M, le Roux C, et al. Effectiveness and cost of integrating a pragmatic pathway for prescribing liraglutide 3.0 mg in obesity services (STRIVE Study): study protocol of an open-label, real-world, randomized, controlled trial. BMJ Open. 2020;10:e034137.

    PubMed  PubMed Central  Google Scholar 

  111. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14:270–84.

    PubMed  Google Scholar 

  112. Moran LJ, Noakes M, Clifton PM, Tomlinson L, Galletly C, Norman RJ. Dietary composition in restoring reproductive and metabolic physiology in overweight women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2004;88:812–9.

    Google Scholar 

  113. Crosignani PG, Colombo M, Vegetti W, Somigliana E, Gessati A, Ragni G. Overweight and obese anovulatory patients with polycystic ovaries: parallel improvements in anthropometric indices, ovarian physiology and fertility rate induced by diet. Hum Reprod. 2003;18:1928–32.

    PubMed  Google Scholar 

  114. Tan S, Hahn S, Benson S, Dietz T, Lahner H, Moeller LC, et al. Metformin improves polycystic ovary syndrome symptoms irrespective of pre-treatment insulin resistance. Eur J Endocrinol. 2007;157:669–76.

    CAS  PubMed  Google Scholar 

  115. Maida A, Lamont BJ, Cao X, Drucker DJ. Metformin regulates the incretin receptor axis via a pathway dependent on peroxisome proliferator-activated receptor-α in mice. Diabetologia. 2011;54:339–49.

    CAS  PubMed  Google Scholar 

  116. McKiney JM, Irwin N, Flatt PR, Bailey CJ, McClenaghan NH. Acute and long-term effects of metformin on the function and insulin secretory responsiveness of clonal-cells. Biol Chem. 2010;391:1451–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios S. Papaetis.

Ethics declarations

Funding

The preparation of this article was not supported by any external funding.

Conflict of interest

Georgios S. Papaetis, Panagiota K. Filippou, Kiriaki G. Constantinidou, and Christina S. Stylianou have no conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papaetis, G.S., Filippou, P.K., Constantinidou, K.G. et al. Liraglutide: New Perspectives for the Treatment of Polycystic Ovary Syndrome. Clin Drug Investig 40, 695–713 (2020). https://doi.org/10.1007/s40261-020-00942-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-020-00942-2

Navigation