Skip to main content
Log in

Safety of Biologics Approved for the Treatment of Rheumatoid Arthritis and Other Autoimmune Diseases: A Disproportionality Analysis from the FDA Adverse Event Reporting System (FAERS)

  • Original Research Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Introduction

The molecular and pharmacological complexity of biologic disease-modifying antirheumatic drugs used for the management of rheumatoid arthritis (RA) favors the occurrence of adverse drug reactions (ADRs), which should be constantly monitored in post-marketing safety studies.

Objective

The aim of this study was to identify signals of disproportionate reporting (SDR) of clinical relevance related to the use of biologic drugs approved for RA and other autoimmune diseases.

Methods

All suspected ADRs registered in the FDA Adverse Event Reporting System between January 2003 and June 2016 were collected. The reporting odds ratio was used as a measure of disproportionality to identify possible SDRs related to biologics. Those involving important medical events and designated medical events (DME) were prioritized.

Results

In total, 2602 SDRs were prioritized. The most commonly reported were ‘Infections and infestations’ (32.2%) and ‘Neoplasms benign, malignant, and unspecified’ (20.4%), and were mainly related to use of infliximab (25.3%, p < 0.001, and 28.8%, p = 0.002, respectively). Sixty-three signals involving DMEs were identified, most of which were related to rituximab (n = 27), and were mainly due to ‘blood disorders’. Amongst the DMEs detected for more than one biologic, ‘intestinal perforation’ and ‘pulmonary fibrosis’ were related to most of them.

Conclusions

The results of this study highlight possible safety issues associated with biologics, whose relationship should be more thoroughly investigated. Our results contribute to future research on the identification of clinically relevant risks associated with these drugs, and may help contribute to their rational and safe use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Smolen JS, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2016 update. Ann Rheum Dis. 2017;76(6):960–77.

    Article  PubMed  Google Scholar 

  2. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023–38.

    Article  PubMed  CAS  Google Scholar 

  3. Patel H, Lissoos T, Rubin DT. Indicators of suboptimal biologic therapy over time in patients with ulcerative colitis and Crohn’s disease in the United States. PLoS One. 2017;12(4):e0175099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jabbar-Lopez ZK, et al. Quantitative evaluation of biologic therapy options for psoriasis: a systematic review and network meta-analysis. J Invest Dermatol. 2017;137(8):1646–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Palmer JB, et al. Treatment patterns and costs for anti-TNFalpha biologic therapy in patients with psoriatic arthritis. BMC Musculoskelet Disord. 2016;17:261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Singh JA, et al. Adverse effects of biologics: a network meta-analysis and Cochrane overview. Cochrane Database Syst Rev. 2011;2:Cd008794.

    Google Scholar 

  7. Verhoef LM, et al. bDMARD dose reduction in rheumatoid arthritis: a narrative review with systematic literature search. Rheumatol Ther. 2017;4(1):1–24.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Woodrick RS, Ruderman EM. Safety of biologic therapy in rheumatoid arthritis. Nat Rev Rheumatol. 2011;7(11):639–52.

    Article  PubMed  CAS  Google Scholar 

  9. Giezen TJ, et al. Mapping the safety profile of biologicals: a disproportionality analysis using the WHO adverse drug reaction database, VigiBase. Drug Saf. 2010;33(10):865–78.

    Article  PubMed  Google Scholar 

  10. Coloma PM, et al. Postmarketing safety surveillance : where does signal detection using electronic healthcare records fit into the big picture? Drug Saf. 2013;36(3):183–97.

    Article  PubMed  Google Scholar 

  11. Hauben M, Aronson JK. Defining ‘signal’ and its subtypes in pharmacovigilance based on a systematic review of previous definitions. Drug Saf. 2009;32(2):99–110.

    Article  PubMed  Google Scholar 

  12. Hauben M, et al. The role of data mining in pharmacovigilance. Expert Opin Drug Saf. 2005;4(5):929–48.

    Article  PubMed  CAS  Google Scholar 

  13. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. European Medicines Agency. Electronic transmission of individual case safety reports message specification (ICH ICSR DTD Version 2.1) 2001. http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/UCM149932.pdf. 06 Jun 2015.

  14. U.S. Food and Drug Administration. FDA adverse event reporting system (FAERS): Latest quarterly data files. 2015. http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Surveillance/AdverseDrugEffects/ucm082193.htm. 10 Oct 2015.

  15. ClinicalTrials.gov. A service of the U.S. National Institutes of Health. 2016. https://clinicaltrials.gov/. 20 Jan 2016.

  16. DrugBank. Drug & drug target database. 2016. http://www.drugbank.ca/. 20 Jan 2016.

  17. Drugs.com. Drug index a to z. 2016. http://www.drugs.com/. 15 Jan 2016.

  18. European Medicines Agency. European public assessment reports. 2016. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/landing/epar_search.jsp&mid=WC0b01ac058001d124. 30 Sept 2016.

  19. U.S Food and Drug Administration. Drugs@FDA. 2016. http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm. 20 Jan 2016.

  20. GenericDrugs. Therapeutic equivalent brand and generic drugs. 2016. http://www.ndrugs.com/. 20 Jan 2016.

  21. Singh JA, et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 2016;68(1):1–26.

    Article  PubMed  Google Scholar 

  22. Smolen JS, et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann Rheum Dis. 2016;75(1):3–15.

    Article  PubMed  Google Scholar 

  23. Wong CK, et al. Standardisation of the FAERS database: a systematic approach to manually recoding drug name variants. Pharmacoepidemiol Drug Saf. 2015;24(7):731–7.

    Article  PubMed  Google Scholar 

  24. International Organization for Standardization-Country Codes-ISO 3166. 2015. http://www.iso.org/iso/home/standards/country_codes.htm. 15 Nov 2015.

  25. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. Medical dictionary for regulatory activities (MedDRA). 2016. http://www.ich.org/products/meddra.html. 15 Sept 2016.

  26. Hubbard RE, O’Mahony MS, Woodhouse KW. Medication prescribing in frail older people. Eur J Clin Pharmacol. 2013;69(3):319–26.

    Article  PubMed  Google Scholar 

  27. Cunningham G. Adverse drug reactions in the elderly and their prevention. Scott Med J. 1997;42(5):136–7.

    Article  PubMed  CAS  Google Scholar 

  28. Cutroneo PM, et al. Safety profile of biological medicines as compared with non-biologicals: an analysis of the italian spontaneous reporting system database. Drug Saf. 2014;37(11):961–70.

    Article  PubMed  Google Scholar 

  29. Hernández MV, Meineri M, Sanmartí R. Lesiones cutáneas y terapia biológica con antagonistas del factor de necrosis tumoral. Reumatología Clínica. 2013;9(1):53–61.

    Article  PubMed  Google Scholar 

  30. Wisniewski AF, et al. Good signal detection practices: evidence from IMI PROTECT. Drug Saf. 2016;39(6):469–90.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Seabroke S, et al. Performance of stratified and subgrouped disproportionality analyses in spontaneous databases. Drug Saf. 2016;39(4):355–64.

    Article  PubMed  CAS  Google Scholar 

  32. van Puijenbroek EP, et al. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf. 2002;11(1):3–10.

    Article  PubMed  CAS  Google Scholar 

  33. European Medicines Agency. Designated Medical Event (DME) list. 2016. http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/general/general_content_000587.jsp&mid=WC0b01ac0580727d1b. 15 Oct 2016.

  34. European Medicines Agency. 19.1 IME list. 2016. http://www.ema.europa.eu/ema/index.jsp?curl=pages/regulation/q_and_a/q_and_a_detail_000166.jsp&mid=WC0b01ac0580a68f78. Accessed 2 June 2018.

  35. Mendes D, Alves C, Batel-Marques F. Safety profiles of adalimumab, etanercept and infliximab: a pharmacovigilance study using a measure of disproportionality in a database of spontaneously reported adverse events. J Clin Pharm Ther. 2014;39(3):307–13.

    Article  PubMed  CAS  Google Scholar 

  36. Giezen TJ, et al. Evaluation of post-authorization safety studies in the first cohort of EU Risk Management Plans at time of regulatory approval. Drug Saf. 2009;32(12):1175–87.

    Article  PubMed  Google Scholar 

  37. Poluzzi E, et al. Data mining techniques in pharmacovigilance: analysis of the publicly accessible FDA adverse event reporting system (AERS). In: Karahoca, editor. Data mining applications in engineering and medicine. Croatia: InTech; 2012. p. 265–302.

    Google Scholar 

  38. Codreanu C, Damjanov N. Safety of biologics in rheumatoid arthritis: data from randomized controlled trials and registries. Biol Targets Ther. 2015;9:1–6.

    CAS  Google Scholar 

  39. Dixit R, et al. Challenges of general safety evaluations of biologics compared to small molecule pharmaceuticals in animal models. Expert Opin Drug Discov. 2010;5(1):79–94.

    Article  PubMed  CAS  Google Scholar 

  40. Giezen TJ, Mantel-Teeuwisse AK, Leufkens HG. Pharmacovigilance of biopharmaceuticals: challenges remain. Drug Saf. 2009;32(10):811–7.

    Article  PubMed  Google Scholar 

  41. Giezen TJ, et al. Safety-related regulatory actions for biologicals approved in the United States and the European Union. Jama. 2008;300(16):1887–96.

    Article  PubMed  CAS  Google Scholar 

  42. Mota LMHD, et al. Segurança do uso de terapias biológicas para o tratamento de artrite reumatoide e espondiloartrites. Revista Brasileira de Reumatologia. 2015;55:281–309.

    Article  PubMed  Google Scholar 

  43. Gottlieb AB. Tumor necrosis factor blockade: mechanism of action. J Investig Dermatol Symp Proc. 2007;12(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  44. Silva LC, Ortigosa LC, Benard G. Anti-TNF-alpha agents in the treatment of immune-mediated inflammatory diseases: mechanisms of action and pitfalls. Immunotherapy. 2010;2(6):817–33.

    Article  PubMed  CAS  Google Scholar 

  45. Mitoma H, et al. Molecular mechanisms of action of anti-TNF-alpha agents—comparison among therapeutic TNF-alpha antagonists. Cytokine. 2016;101:56–63.

    Article  PubMed  CAS  Google Scholar 

  46. Wallis RS, et al. Granulomatous infectious diseases associated with tumor necrosis factor antagonists. Clin Infect Dis. 2004;38(9):1261–5.

    Article  PubMed  CAS  Google Scholar 

  47. Raaschou P, et al. Rheumatoid arthritis, anti-tumour necrosis factor treatment, and risk of squamous cell and basal cell skin cancer: cohort study based on nationwide prospectively recorded data from Sweden. BMJ. 2016;352:i262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wolfe F, Michaud K. Biologic treatment of rheumatoid arthritis and the risk of malignancy: analyses from a large US observational study. Arthritis Rheum. 2007;56(9):2886–95.

    Article  PubMed  Google Scholar 

  49. Lapeyre-Mestre M, et al. Pharmacoepidemiology studies: what levels of evidence and how can they be reached? Therapie. 2013;68(4):241–52.

    Article  PubMed  Google Scholar 

  50. van Vollenhoven RF, et al. Longterm safety of rituximab: final report of the rheumatoid arthritis global clinical trial program over 11 years. J Rheumatol. 2015;42(10):1761–6.

    Article  PubMed  CAS  Google Scholar 

  51. Kasi PM, et al. Clinical review: serious adverse events associated with the use of rituximab—a critical care perspective. Critical Care. 2012;16(4):231.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Alomar MJ. Factors affecting the development of adverse drug reactions (Review article). Saudi Pharm J. 2014;22(2):83–94.

    Article  PubMed  Google Scholar 

  53. Bohra C, Sokol L, Dalia S. Progressive multifocal leukoencephalopathy and monoclonal antibodies: a review. Cancer Control. 2017;24(4):1073274817729901.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bate A, Evans SJ. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf. 2009;18(6):427–36.

    Article  PubMed  CAS  Google Scholar 

  55. Michel C, et al. Can disproportionality analysis of post-marketing case reports be used for comparison of drug safety profiles? Clin Drug Investig. 2017;37(5):415–22.

    Article  PubMed  Google Scholar 

  56. Downey C. Serious infection during etanercept, infliximab and adalimumab therapy for rheumatoid arthritis: a literature review. Int J Rheum Dis. 2016;19(6):536–50.

    Article  PubMed  Google Scholar 

  57. Berghen N, et al. Malignancies and anti-TNF therapy in rheumatoid arthritis: a single-center observational cohort study. Clin Rheumatol. 2015;34(10):1687–95.

    Article  PubMed  Google Scholar 

  58. Raval G, Mehta P. TNF-alpha inhibitors: are they carcinogenic? Drug Healthc Patient Saf. 2010;2:241–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Solomon DH, Mercer E, Kavanaugh A. Observational studies on the risk of cancer associated with tumor necrosis factor inhibitors in rheumatoid arthritis: a review of their methodologies and results. Arthritis Rheum. 2012;64(1):21–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Mok CC. Rituximab for the treatment of rheumatoid arthritis: an update. Drug Des Dev Ther. 2013;8:87–100.

    Article  CAS  Google Scholar 

  61. Nakayama S. Autoimmune hepatitis triggered by anti-TNF-alpha therapy. Case Rep Med. 2013;2013:561748.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rodrigues S, et al. Autoimmune hepatitis and anti-tumor necrosis factor alpha therapy: a single center report of 8 cases. World J Gastroenterol. 2015;21(24):7584–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Mourad AA, et al. Adverse reactions to infliximab and the outcome of desensitization. Ann Allergy Asthma Immunol. 2015;115(2):143–6.

    Article  PubMed  CAS  Google Scholar 

  64. Flaig T, et al. Tocilizumab-induced pancreatitis: case report and review of data from the FDA adverse event reporting system. J Clin Pharm Ther. 2016;41(6):718–21.

    Article  PubMed  CAS  Google Scholar 

  65. Strangfeld A, et al. Risk for lower intestinal perforations in patients with rheumatoid arthritis treated with tocilizumab in comparison to treatment with other biologic or conventional synthetic DMARDs. Ann Rheum Dis. 2017;76(3):504–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Roubille C, Haraoui B. Interstitial lung diseases induced or exacerbated by DMARDS and biologic agents in rheumatoid arthritis: a systematic literature review. Semin Arthritis Rheum. 2014;43(5):613–26.

    Article  PubMed  CAS  Google Scholar 

  67. Hammond IW, et al. Database size and power to detect safety signals in pharmacovigilance. Expert Opin Drug Saf. 2007;6(6):713–21.

    Article  PubMed  CAS  Google Scholar 

  68. van der Heijden PG, et al. On the assessment of adverse drug reactions from spontaneous reporting systems: the influence of under-reporting on odds ratios. Stat Med. 2002;21(14):2027–44.

    Article  PubMed  Google Scholar 

  69. Blenkinsopp A, et al. Patient reporting of suspected adverse drug reactions: a review of published literature and international experience. Br J Clin Pharmacol. 2007;63(2):148–56.

    Article  PubMed  CAS  Google Scholar 

  70. van Grootheest K, et al. Pharmacists’ role in reporting adverse drug reactions in an international perspective. Pharmacoepidemiol Drug Saf. 2004;13(7):457–64.

    Article  PubMed  Google Scholar 

  71. Hadi MA, et al. Pharmacovigilance: pharmacists’ perspective on spontaneous adverse drug reaction reporting. Integr Pharm Res Pract. 2017;6:91–8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fletcher AP. Spontaneous adverse drug reaction reporting vs event monitoring: a comparison. J R Soc Med. 1991;84(6):341–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Hazell L, Shakir SA. Under-reporting of adverse drug reactions : a systematic review. Drug Saf. 2006;29(5):385–96.

    Article  PubMed  Google Scholar 

  74. Pierfitte C, et al. Is reporting rate a good predictor of risks associated with drugs? Br J Clin Pharmacol. 1999;47(3):329–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hartnell NR, Wilson JP. Replication of the Weber effect using postmarketing adverse event reports voluntarily submitted to the United States Food and Drug Administration. Pharmacotherapy. 2004;24(6):743–9.

    Article  PubMed  Google Scholar 

  76. Hoffman KB, et al. The Weber effect and the United States Food and Drug Administration’s adverse event reporting system (FAERS): analysis of sixty-two drugs approved from 2006 to 2010. Drug Saf. 2014;37(4):283–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Pariente A, et al. Impact of safety alerts on measures of disproportionality in spontaneous reporting databases: the notoriety bias. Drug Saf. 2007;30(10):891–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid Wiens.

Ethics declarations

Funding

No funding was received in the preparation of this manuscript.

Conflict of interest

Ariane G. S. Araujo, Helena H. L. Borba, Fernanda S. Tonin, Luana Lenzi, Rafael Venson, Roberto Pontarolo, and Astrid Wiens have no conflicts of interest directly relevant to the content of this article.

Ethical approval

Ethical approval was not required for this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 395 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araujo, A.G.S., Borba, H.H.L., Tonin, F.S. et al. Safety of Biologics Approved for the Treatment of Rheumatoid Arthritis and Other Autoimmune Diseases: A Disproportionality Analysis from the FDA Adverse Event Reporting System (FAERS). BioDrugs 32, 377–390 (2018). https://doi.org/10.1007/s40259-018-0285-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-018-0285-2

Navigation