Skip to main content
Log in

Selection of Potential Therapeutic Human Single-Chain Fv Antibodies against Cholecystokinin-B/Gastrin Receptor by Phage Display Technology

  • Original Research Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Background and Objective

Gastric/gastrointestinal cancers are associated with high mortality worldwide. G-protein coupled receptor (GPCR) superfamily members such as gastrin/cholecystokinin-B receptor (CCK-BR) are involved in progression of gastric tumors, thus CCK-BR is considered as a potential target for immunotherapy. However, production of functional monoclonal antibodies (mAbs) against GPCR seems to be very challenging, in part due to its integration in cell membranes and inaccessibility for selection. To tackle this problem, we implemented phage display technology and a solution-phase biopanning (SPB) scheme for production of mAbs specific to the native conformation of CCK-BR.

Methods

To perform the SPB process, we utilized a synthetic biotinylated peptide corresponding to the second extracellular loop (ECL2) of CCK-BR and a semi-synthetic phage antibody library. After enzyme-linked immunosorbent assay (ELISA) screening, the CCK-BR specificity of the selected single-chain variable fragments (scFvs) were further examined using immunoblotting, whole-cell ELISA, and flow cytometry assays.

Results

After performing four rounds of selection, we identified nine antibody clones which showed positive reactivity with the CCK-BR peptide in an ELISA assay. Of these, eight clones were unique scFv antibodies and one was a VL single domain antibody. Specificity analysis of the selected scFvs revealed that five of the selected scFvs recognized a denatured form of CCK-BR, while the majority of the selected scFvs were able to recognize the native conformation of CCK-BR on the surface of human gastric adenocarcinoma cells and cervical carcinoma HeLa cells.

Conclusion

For the first time, we report on the establishment of a diverse panel of scFv antibody fragments that are specific to the native conformation of CCK-BR. Based on these results, we suggest the selected scFv antibody fragments as potential agents for diagnosis, imaging, targeting, and/or immunotherapy of cancers that overexpress CCK-BR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sasako M, Inoue M, Lin JT, et al. Gastric cancer working group report. Jpn J Clin Oncol. 2010;40(Suppl. 1):i28–37.

    Article  PubMed  Google Scholar 

  2. Hartgrink HH, Jansen EP, van Grieken NC, et al. Gastric cancer. Lancet. 2009;374:477–90.

    Article  PubMed  Google Scholar 

  3. Yamashita K, Sakuramoto S, Watanabe M. Genomic and epigenetic profiles of gastric cancer: potential diagnostic and therapeutic applications. Surg Today. 2011;41:24–38.

    Article  PubMed  Google Scholar 

  4. Arkenau HT. Gastric cancer in the era of molecularly targeted agents: current drug development strategies. J Cancer Res Clin Oncol. 2009;135:855–66.

    Article  PubMed  Google Scholar 

  5. Burkitt MD, Varro A, Pritchard DM. Importance of gastrin in the pathogenesis and treatment of gastric tumors. World J Gastroenterol. 2009;15:1–16.

    Article  PubMed  CAS  Google Scholar 

  6. Polk DB, Peek RM Jr. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer. 2010;10:403–14.

    Article  PubMed  CAS  Google Scholar 

  7. McCaig C, Duval C, Hemers E, et al. The role of matrix metalloproteinase-7 in redefining the gastric microenvironment in response to Helicobacter pylori. Gastroenterology. 2006;130:1754–63.

    Article  PubMed  CAS  Google Scholar 

  8. Varro A, Noble PJ, Pritchard DM, et al. Helicobacter pylori induces plasminogen activator inhibitor 2 in gastric epithelial cells through nuclear factor-kappaB and RhoA: implications for invasion and apoptosis. Cancer Res. 2004;64:1695–702.

    Article  PubMed  CAS  Google Scholar 

  9. Smith AM, Watson SA, Caplin M, et al. Gastric carcinoid expresses the gastrin autocrine pathway. Br J Surg. 1998;85:1285–9.

    Article  PubMed  CAS  Google Scholar 

  10. Stubbs M, Khan K, Watson SA, et al. Endocytosis of anti-CCK-B/gastrin receptor antibody and effect on hepatoma cell lines. J Histochem Cytochem. 2002;50:1213–7.

    Article  PubMed  CAS  Google Scholar 

  11. Watson SA, Clarke PA, Smith AM, et al. Expression of CCKB/gastrin receptor isoforms in gastro-intestinal tumour cells. Int J Cancer. 1998;77:572–7.

    Article  PubMed  CAS  Google Scholar 

  12. Varro A, Noble PJ, Wroblewski LE, et al. Gastrin-cholecystokinin(B) receptor expression in AGS cells is associated with direct inhibition and indirect stimulation of cell proliferation via paracrine activation of the epidermal growth factor receptor. Gut. 2002;50:827–33.

    Article  PubMed  CAS  Google Scholar 

  13. Barderas R, Shochat S, Timmerman P, et al. Designing antibodies for the inhibition of gastrin activity in tumoral cell lines. Int J Cancer. 2008;122:2351–9.

    Article  PubMed  CAS  Google Scholar 

  14. Gilliam AD, Watson SA, Henwood M, et al. A phase II study of G17DT in gastric carcinoma. Eur J Surg Oncol. 2004;30:536–43.

    Article  PubMed  CAS  Google Scholar 

  15. Ajani JA, Hecht JR, Ho L, et al. An open-label, multinational, multicenter study of G17DT vaccination combined with cisplatin and 5-fluorouracil in patients with untreated, advanced gastric or gastroesophageal cancer: the GC4 study. Cancer. 2006;106(9):1908–16.

    Article  PubMed  CAS  Google Scholar 

  16. McWilliams DF, Grimes S, Watson SA. Antibodies raised against the extracellular tail of the CCKB/gastrin receptor inhibit gastrin-stimulated signalling. Regul Pept. 2001;99:157–61.

    Article  PubMed  CAS  Google Scholar 

  17. Watson SA, Clarke PA, Morris TM, et al. Antiserum raised against an epitope of the cholecystokinin B/gastrin receptor inhibits hepatic invasion of a human colon tumor. Cancer Res. 2000;60:5902–7.

    PubMed  CAS  Google Scholar 

  18. Hancock WW. Chemokines and transplant immunobiology. J Am Soc Nephrol. 2002;13:821–4.

    PubMed  CAS  Google Scholar 

  19. Brett BT, Smith SC, Bouvier CV, et al. Phase II study of anti-gastrin-17 antibodies, raised to G17DT, in advanced pancreatic cancer. J Clin Oncol. 2002;20:4225–31.

    Article  PubMed  CAS  Google Scholar 

  20. Reichert JM. Marketed therapeutic antibodies compendium. MAbs. 2012;4:413–5.

    PubMed  Google Scholar 

  21. Stockwin LH, Holmes S. Antibodies as therapeutic agents: vive la renaissance! Expert Opin Biol Ther. 2003;3:1133–52.

    Article  PubMed  CAS  Google Scholar 

  22. Hong H, Kim S. Antibody engineering. Biotechnol Bioprocess Eng. 2002;7:150–4.

    Article  CAS  Google Scholar 

  23. Kim SJ, Park Y, Hong HJ. Antibody engineering for the development of therapeutic antibodies. Mol Cells. 2005;20:17–29.

    PubMed  CAS  Google Scholar 

  24. Mondon P, Dubreuil O, Bouayadi K, et al. Human antibody libraries: a race to engineer and explore a larger diversity. Front Biosci. 2008;13:1117–29.

    Article  PubMed  CAS  Google Scholar 

  25. Sergeeva A, Kolonin MG, Molldrem JJ, et al. Display technologies: application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev. 2006;58:1622–54.

    Article  PubMed  CAS  Google Scholar 

  26. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315–7.

    Article  PubMed  CAS  Google Scholar 

  27. Bradbury AR, Marks JD. Antibodies from phage antibody libraries. J Immunol Methods. 2004;290:29–49.

    Article  PubMed  CAS  Google Scholar 

  28. Hoet RM, Cohen EH, Kent RB, et al. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol. 2005;23:344–8.

    Article  PubMed  CAS  Google Scholar 

  29. Soderlind E, Strandberg L, Jirholt P, et al. Recombining germline-derived CDR sequences for creating diverse single-framework antibody libraries. Nat Biotechnol. 2000;18:852–6.

    Article  PubMed  CAS  Google Scholar 

  30. O’Connell D, Becerril B, Roy-Burman A, et al. Phage versus phagemid libraries for generation of human monoclonal antibodies. J Mol Biol. 2002;321:49–56.

    Article  PubMed  Google Scholar 

  31. Knappik A, Ge L, Honegger A, et al. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol. 2000;296:57–86.

    Article  PubMed  CAS  Google Scholar 

  32. Tohidkia MR, Barar J, Asadi F, et al. Molecular considerations for development of phage antibody libraries. J Drug Target. 2012;20:195–208.

    Article  PubMed  CAS  Google Scholar 

  33. Benhar I. Design of synthetic antibody libraries. Expert Opin Biol Ther. 2007;7:763–79.

    Article  PubMed  CAS  Google Scholar 

  34. Nelson AL. Antibody fragments: hope and hype. MAbs. 2010;2:77–83.

    Article  PubMed  Google Scholar 

  35. Majidi J, Barar J, Baradaran B, et al. Target therapy of cancer: implementation of monoclonal antibodies and nanobodies. Hum Antibodies. 2009;18:81–100.

    PubMed  CAS  Google Scholar 

  36. Ben-Kasus T, Schechter B, Sela M, et al. Cancer therapeutic antibodies come of age: targeting minimal residual disease. Mol Oncol. 2007;1:42–54.

    Article  PubMed  CAS  Google Scholar 

  37. Sanz L, Blanco B, Alvarez-Vallina L. Antibodies and gene therapy: teaching old ‘magic bullets’ new tricks. Trends Immunol. 2004;25:85–91.

    Article  PubMed  CAS  Google Scholar 

  38. Weiner LM, Murray JC, Shuptrine CW. Antibody-based immunotherapy of cancer. Cell. 2012;148:1081–4.

    Article  PubMed  CAS  Google Scholar 

  39. Binyamin L, Borghaei H, Weiner LM. Cancer therapy with engineered monoclonal antibodies. Update Cancer Ther. 2006;1:147–57.

    Article  Google Scholar 

  40. Beckman RA, Weiner LM, Davis HM. Antibody constructs in cancer therapy: protein engineering strategies to improve exposure in solid tumors. Cancer. 2007;109:170–9.

    Article  PubMed  CAS  Google Scholar 

  41. Adams GP, Schier R. Generating improved single-chain Fv molecules for tumor targeting. J Immunol Methods. 1999;231:249–60.

    Article  PubMed  CAS  Google Scholar 

  42. Smith J, Kontermann RE, Embleton J, et al. Antibody phage display technologies with special reference to angiogenesis. FASEB J. 2005;19:331–41.

    Article  PubMed  CAS  Google Scholar 

  43. Peeters MC, van Westen GJ, Li Q, et al. Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation. Trends Pharmacol Sci. 2011;32:35–42.

    Article  PubMed  CAS  Google Scholar 

  44. de Haard HJ, van Neer N, Reurs A, et al. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem. 1999;274:18218–30.

    Article  PubMed  Google Scholar 

  45. Freson K, Van Geet C, Hoylaerts M, et al. Anti-VPAC1 antibodies and theire uses. In: WO Patent WO/2009/000,894; 2008.

  46. Huang L, Sato AK, Sachdeva M, et al. Discovery of human antibodies against the C5aR target using phage display technology. J Mol Recognit. 2005;18:327–33.

    Article  PubMed  CAS  Google Scholar 

  47. Hawlisch H, Frank R, Hennecke M, et al. Site-directed C3a receptor antibodies from phage display libraries. J Immunol. 1998;160:2947–58.

    PubMed  CAS  Google Scholar 

  48. Hoogenboom HR, Lutgerink JT, Pelsers MM, et al. Selection-dominant and nonaccessible epitopes on cell-surface receptors revealed by cell-panning with a large phage antibody library. Eur J Biochem. 1999;260:774–84.

    Article  PubMed  CAS  Google Scholar 

  49. Sui J, Bai J, St Clair Tallarico A, et al. Identification of CD4 and transferrin receptor antibodies by CXCR4 antibody-guided Pathfinder selection. Eur J Biochem. 2003;270:4497–506.

    Article  PubMed  CAS  Google Scholar 

  50. Mirzabekov T, Kontos H, Farzan M, et al. Paramagnetic proteoliposomes containing a pure, native, and oriented seven-transmembrane segment protein, CCR5. Nat Biotechnol. 2000;18:649–54.

    Article  PubMed  CAS  Google Scholar 

  51. Henderikx P, Kandilogiannaki M, Petrarca C, et al. Human single-chain Fv antibodies to MUC1 core peptide selected from phage display libraries recognize unique epitopes and predominantly bind adenocarcinoma. Cancer Res. 1998;58:4324–32.

    PubMed  CAS  Google Scholar 

  52. Hawkins RE, Russell SJ, Winter G. Selection of phage antibodies by binding affinity: mimicking affinity maturation. J Mol Biol. 1992;226:889–96.

    Article  PubMed  CAS  Google Scholar 

  53. Emadi S, Barkhordarian H, Wang MS, et al. Isolation of a human single chain antibody fragment against oligomeric alpha-synuclein that inhibits aggregation and prevents alpha-synuclein-induced toxicity. J Mol Biol. 2007;368:1132–44.

    Article  PubMed  CAS  Google Scholar 

  54. Marks JD, Hoogenboom HR, Bonnert TP, et al. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol. 1991;222:581–97.

    Article  PubMed  CAS  Google Scholar 

  55. Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor (NY): CSHL press; 2001.

    Google Scholar 

  56. Konthur Z, Wilde J. Evaluation of recombinant antibodies on protein microarrays applying the multiple spotting technique. Antibody Eng 2010; 447–60.

  57. Retter I, Althaus HH, Münch R, et al. VBASE2, an integrative V gene database. Nucleic Acids Res. 2005;33:D671–4.

    Article  PubMed  CAS  Google Scholar 

  58. Kipriyanov SM, Moldenhauer G, Little M. High level production of soluble single chain antibodies in small-scale Escherichia coli cultures. J Immunol Methods. 1997;200:69–77.

    Article  PubMed  CAS  Google Scholar 

  59. Schmiedl A, Breitling F, Winter CH, et al. Effects of unpaired cysteines on yield, solubility and activity of different recombinant antibody constructs expressed in E. coli. J Immunol Methods. 2000;242:101–14.

    Article  PubMed  CAS  Google Scholar 

  60. Hutchings CJ, Koglin M, Marshall FH. Therapeutic antibodies directed at G protein-coupled receptors. MAbs. 2010;2:594–606.

    Article  PubMed  Google Scholar 

  61. Gupta A, Decaillot FM, Gomes I, et al. Conformation state-sensitive antibodies to G-protein-coupled receptors. J Biol Chem. 2007;282:5116–24.

    Article  PubMed  CAS  Google Scholar 

  62. Sidhu SS, editor. Phage display in biotechnology and drug discovery. Boca Raton (FL): CRC Press; 2005.

    Google Scholar 

  63. Hust M, Steinwand M, Al-Halabi L, et al. Improved microtitre plate production of single chain Fv fragments in Escherichia coli. N Biotechnol. 2009;25:424–8.

    Article  PubMed  CAS  Google Scholar 

  64. Goffinet M, Chinestra P, Lajoie-Mazenc I, et al. Identification of a GTP-bound Rho specific scFv molecular sensor by phage display selection. BMC Biotechnol. 2008;8:34.

    Article  PubMed  Google Scholar 

  65. Jensen KB, Larsen M, Pedersen JS, et al. Functional improvement of antibody fragments using a novel phage coat protein III fusion system. Biochem Biophys Res Commun. 2002;298:566–73.

    Article  PubMed  Google Scholar 

  66. Wang X, Campoli M, Ko E, et al. Enhancement of scFv fragment reactivity with target antigens in binding assays following mixing with anti-tag monoclonal antibodies. J Immunol Methods. 2004;294:23–35.

    Article  PubMed  CAS  Google Scholar 

  67. Wu S, Ke A, Doudna JA. A fast and efficient procedure to produce scFvs specific for large macromolecular complexes. J Immunol Methods. 2007;318:95–101.

    Article  PubMed  CAS  Google Scholar 

  68. Barderas R, Shochat S, Martinez-Torrecuadrada J, et al. A fast mutagenesis procedure to recover soluble and functional scFvs containing amber stop codons from synthetic and semisynthetic antibody libraries. J Immunol Methods. 2006;312:182–9.

    Article  PubMed  CAS  Google Scholar 

  69. Lebesgue D, Wallukat G, Mijares A, et al. An agonist-like monoclonal antibody against the human beta2-adrenoceptor. Eur J Pharmacol. 1998;348:123–33.

    Article  PubMed  CAS  Google Scholar 

  70. Teufel M, Pompejus M, Humbel B, et al. Properties of bacteriorhodopsin derivatives constructed by insertion of an exogenous epitope into extra-membrane loops. EMBO J. 1993;12:3399–408.

    PubMed  CAS  Google Scholar 

  71. Verdot L, Bertin B, Guilloteau D, et al. Characterization of pharmacologically active anti-peptide antibodies directed against the first and second extracellular loops of the serotonin 5-HT1A receptor. J Neurochem. 1995;65:319–28.

    Article  PubMed  CAS  Google Scholar 

  72. Zhang Y, Pool C, Sadler K, et al. Selection of active scFv to G-protein-coupled receptor CCR5 using surface antigen-mimicking peptides. Biochemistry. 2004;43:12575–84.

    Article  PubMed  CAS  Google Scholar 

  73. Hall BL, Boroughs J, Kobrin BJ. A novel tumor-specific human single-chain Fv selected from an active specific immunotherapy phage display library. Immunotechnology. 1998;4:127–40.

    Article  PubMed  CAS  Google Scholar 

  74. Schwab C, Bosshard HR. Caveats for the use of surface-adsorbed protein antigen to test the specificity of antibodies. J Immunol Methods. 1992;147:125–34.

    Article  PubMed  CAS  Google Scholar 

  75. Adey NB, Mataragnon AH, Rider JE, et al. Characterization of phage that bind plastic from phage-displayed random peptide libraries. Gene. 1995;156:27–31.

    Article  PubMed  CAS  Google Scholar 

  76. Butler JE, Ni L, Nessler R, et al. The physical and functional behavior of capture antibodies adsorbed on polystyrene. J Immunol Methods. 1992;150:77–90.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Digestive Disease Research Center (DDRC) at Tehran University of Medical Sciences and the Research Center for Pharmaceutical Nanotechnology (RCPN) at Tabriz University of Medical Sciences. The authors are grateful to Mr. Abolfazl Barzegari, Dr. Hossein Zareh and Dr. Safar Farajnia (Tabriz University of Medical Sciences) and Dr. Masoumeh Rajabi Bazli (Shaid Behesti University of Medical Sciences) for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farzad Asadi or Yadollah Omidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohidkia, M.R., Asadi, F., Barar, J. et al. Selection of Potential Therapeutic Human Single-Chain Fv Antibodies against Cholecystokinin-B/Gastrin Receptor by Phage Display Technology. BioDrugs 27, 55–67 (2013). https://doi.org/10.1007/s40259-012-0007-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-012-0007-0

Keywords

Navigation