Skip to main content

Advertisement

Log in

Bimetallic Sulfide/Sulfur Doped T3C2Tx MXene Nanocomposites as High-performance Anode Materials for Sodium-ion Batteries

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The application of transition metal dichalcogenides(TMDs) as anode materials in sodium-ion batteries (SIBs) has been hindered by low conductivity and poor cyclability. Herein, we report the synthesis of CoxFe1−xS2 bimetallic sulfide/sulfur-doped Ti3C2 MXene nanocomposites(CoxFe1−xS2@S-Ti3C2) by a facile co-precipitation process and thermal-sulfurization reaction. The interconnected 3D frameworks consisting of MXene nanosheets can effectively buffer the volume change and enhance the charge transfer. In particular, sulfur-doped MXene nanosheets provide rich active sites for sodium storage and restrain sulfur loss during charging/discharging processes, leading the increase of specific capacity and cycling the stability of anode materials. As a result, CoxFe1−xS2@S-Ti3C2 anodes exhibited high capacity, high rate capability and long cycle life(399 m·Ah/g at 5 A/g with an 94% capacity retention after 600 cycles).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goodenough J. B., Park K. S., J. Am. Chem. Soc., 2013, 135, 1167

    Article  CAS  Google Scholar 

  2. Augustyn V., Come J., Lowe M. A., Kim J. W., Taberna P. L., Tolbert S. H., Abruna H. D., Simon P., Dunn B., Nat. Mater., 2013, 12, 518

    Article  CAS  Google Scholar 

  3. Myung S. T., Lee K. S., Sun Y. K., Yashiro H., J. Power Sources, 2011, 196, 7039

    Article  CAS  Google Scholar 

  4. Slater M. D., Kim D., Lee E., Johnson C. S., Adv. Funct. Mater., 2013, 23, 947

    Article  CAS  Google Scholar 

  5. Cui J., Yao S. S., Kim J. K., Energy Storage Mater., 2017, 7, 64

    Article  Google Scholar 

  6. Liu J., Wen Y., Wang Y., van Aken P. A., Maier J., Yu Y., Adv. Mater., 2014, 26, 6025

    Article  CAS  Google Scholar 

  7. Fang C., Huang Y. H., Zhang W. X., Han J. T., Deng Z., Cao Y. L., Yang H. X., Adv. Energy Mater., 2016, 6, 18

    Google Scholar 

  8. Li Y. M., Lu Y. X., Zhao C. L., Hu Y. S., Titirici M. M., Li H., Huang X. J., Chen L. Q., Energy Storage Mater., 2017, 7, 130

    Article  Google Scholar 

  9. Chen Y. Y., Hu X. D., Evanko B., Sun X. H., Li X., Hou T.Y., Cai S., Zheng C. M., Hu W. B., Stucky G. D., Nano Energy, 2018, 46, 117

    Article  CAS  Google Scholar 

  10. David L., Bhandavat R., Singh G., ACS Nano, 2014, 8, 1759

    Article  CAS  Google Scholar 

  11. Wang T. Y., Chen S. Q., Pang H., Xue H. G., Yu Y., Adv. Sci., 2017, 4, 1600289

    Article  Google Scholar 

  12. Teng Y. Q., Zhao H. L., Zhang Z. J., Zhao L. N., Zhang Y., Li Z. L., Xia Q., Du Z. H., Swierczek K., Carbon, 2017, 119, 91

    Article  CAS  Google Scholar 

  13. Chen J. E., Fan M. S., Chen Y. L., Deng Y. H., Kim J. H., Alamri H. R., Alothman Z. A., Yamauchi Y., Ho K. C., Wu K. C. W., Chem. Eur. J., 2017, 23, 13284

    Article  CAS  Google Scholar 

  14. Zhu Y. J., Suo L. M., Gao T., Fan X. L., Han F. D., Wang C. S., Electrochem. Commun., 2015, 54, 18

    Article  CAS  Google Scholar 

  15. Zhang S. S., Tran D. T., J. Electrochem. Soc., 2016, 163, A792

    Article  CAS  Google Scholar 

  16. Chen K. Y., Zhang W. X., Xue L. H., Chen W. L., Xiang X. H., Wan M., Huang Y. H., ACS Appl. Mater. Interfaces, 2017, 9, 1536

    Article  CAS  Google Scholar 

  17. Liu Z. M., Lu T. C., Song T., Yu X. Y., Lou X. W., Paik U., Energy Environ. Sci., 2017, 10, 1576

    Article  Google Scholar 

  18. Zhang K., Park M., Zhou L. M., Lee G. H., Shin J., Hu Z., Chou S. L., Chen J., Kang Y. M., Angew. Chem.-Int. Ed., 2016, 55, 12822

    Article  CAS  Google Scholar 

  19. Yan J., Ren C. E., Maleski K., Hatter C. B., Anasori B., Urbankowski P., Sarycheva A., Gogotsi Y., Adv. Funct. Mater., 2017, 27, 1701264

    Article  Google Scholar 

  20. Du Y. T., Kan X., Yang F., Gan L. Y., Schwingenschlogl U., ACS Appl. Mater. Interfaces, 2018, 10, 32867

    Article  CAS  Google Scholar 

  21. Xiong D. B., Li X. F., Bai Z. M., Lu S. G., Small, 2018, 14, 1703419

    Article  Google Scholar 

  22. Huang K., Li Z. J., Lin J., Han G., Huang P., Chem. Soc. Rev., 2018, 47, 6889

    Article  CAS  Google Scholar 

  23. Huang H. W., Cui J., Liu G. X., Bi R., Zhang L., ACS Nano, 2019, 13, 3448

    Article  CAS  Google Scholar 

  24. Guo X., Zhang J. Q., Song J. J., Wu W. J., Liu H., Wang G. X., Energy Storage Mater., 2018, 14, 306

    Article  Google Scholar 

  25. Zhao D. Y., Zhao R. Z., Dong S. H., Miao X. G., Zhang Z. W., Wang C. X., Yin L. W., Energy Environ. Sci., 2019, 12, 2422

    Article  CAS  Google Scholar 

  26. Luo J. M., Zheng J. H., Nai J. W., Jin C. B., Yuan H. D., Sheng O. W., Liu Y. J., Fang R. Y., Zhang W. K., Huang H., Adv. Fun. Mater., 2019, 29, 1808107

    Article  Google Scholar 

  27. Bao W. Z., Shuck C. E., Zhang W. X., Guo X., Gogotsi Y., Wang G. X., ACS Nano, 2019, 13, 11500

    Article  CAS  Google Scholar 

  28. Ge P., Hou H. S., Li S. J., Yang L., Ji X. B., Adv. Funct. Mater., 2018, 28, 1801765

    Article  Google Scholar 

  29. Zhao W. X., Guo C. X., Li C.M., J. Mater. Chem. A, 2017, 5, 19195

    Article  CAS  Google Scholar 

  30. Shao M., Cheng Y. Y., Zhang T., Li S., Zhang W. N., Zheng B., Wu J. S., Xiong W. W., Huo F. W., Lu J., ACS Appl. Mater. Interfaces, 2018, 10, 33097

    Article  CAS  Google Scholar 

  31. Zhang Y. Q., Tao H. C., Du S. L., Yang X. L., ACS Appl. Mater. Interfaces, 2019, 11, 11327

    Article  CAS  Google Scholar 

  32. Wang T. S., Hu P., Zhang C. J., Du H. P., Zhang Z. H., Wang X. G., Chen S. G., Xiong J. W., Cui G. L., ACS Appl. Mater. Interfaces, 2016, 8, 7811

    Article  CAS  Google Scholar 

  33. Jiang Y. L., Zou G. Q., Hong W. W., Zhang Y., Zhang Y., Shuai H. L., Xu W., Hou H. S., Ji X. B., Nanoscale, 2018, 10, 18786

    Article  CAS  Google Scholar 

  34. Zhang Y. H., Wang N. N., Sun C. H., Lu Z. X., Xue P., Tang B., Bai Z. C., Dou S. X., Chem. Eng. J., 2018, 332, 370

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoxiu Wang.

Additional information

Supported by the National Natural Science Foundation of China(No.21573110) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD), China.

Supporting Information

40242_2020_120_MOESM1_ESM.pdf

Bimetallic Sulfide/Sulfur Doped T3C2Tx MXene Nanocomposites as High-performance Anode Materials for Sodium-ion Batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zang, R., Li, P. & Wang, G. Bimetallic Sulfide/Sulfur Doped T3C2Tx MXene Nanocomposites as High-performance Anode Materials for Sodium-ion Batteries. Chem. Res. Chin. Univ. 36, 431–438 (2020). https://doi.org/10.1007/s40242-020-0120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0120-4

Keywords

Navigation