Skip to main content
Log in

The effect of gas versus charcoal open flames on the induction of polycyclic aromatic hydrocarbons in cooked meat: a systematic review and meta-analysis

  • Review article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

Open flames of gas and charcoal can induce polycyclic aromatic hydrocarbons (PAHs) in cooked meat. The current study aimed to compare the effect of gas and charcoal open flames on the induction of PAHs in cooked meat using a meta-analysis approach.

Methods

A systematic review of the literature was conducted electronically based on the PRISMA guidelines. Experimental studies comparing the PAHs content of cooked meat over open flames of gas and charcoal were searched using the appropriate keywords until June 2018.

Results

Of 1137 papers retrieved, 7 with a total sample size of 474 meat samples were used in the meta-analysis. The mean difference (MD) between the gas and charcoal cooking methods in the induction of each PAH was 2.053 μg/Kg. (95%CI: 1.022–3.085 μg/Kg; P < 0.001). The subgroup analysis of 17 trials indicated the difference between the two cooking methods increases when red meat rather than white meat is cooked (MD in red meat: 3.499 μg/Kg; 95%CI: 2.030–4.967; P < 0.0001 vs. MD in white meat: 3.319 μg/Kg; 95% CI: 1.689–4.950; P < 0.0001). Interestingly, studies that analyzed meat samples for fewer PAHs (cut-off ≤7) found a much wider difference between gas and charcoal-cooked meat (MD: 5.106 μg/Kg; (95% CI: 2.162–8.049; P < 0.001 in studies with ≤7 PAHs vs. MD: 1.447 μg/Kg; 95% CI: 0.628–2.266; P < 0.001 in studies with >7 PAHs).

Conclusions

It is necessary to avoid open flames of charcoal as the heat source or change the geometry of charcoal-fired cookstoves to prevent fat dripping on the fire and thus, excessive PAHs induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. IARC. Monographs on the evaluation of the carcinogenic risk of chemicals to humans. In: Overall evaluation of carcinogenicity: An updating of IARC monographs. Lyon, France: International Agency Research on Cancer (IARC); 1987.

    Google Scholar 

  2. Waszak DQ, da Cunha ACB, Agarrallua MR, Goebel CS, Sampaio CH. Bioremediation of a Benzo [a] Pyrene-contaminated Soil using a microbial consortium with Pseudomonas aeruginosa, Candida albicans, Aspergillus flavus, and Fusarium sp. Water Air Soil Poll. 2015;226(9):319.

    Article  Google Scholar 

  3. Meeting JFWECoFA, Organization WH. Safety evaluation of certain food additives. Vol 56. World health. Organization. 2006.

  4. Alomirah H, Al-Zenki S, Al-Hooti S, Zaghloul S, Sawaya W, Ahmed N, et al. Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control. 2011;22(12):2028–35. https://doi.org/10.1016/j.foodcont.2011.05.024.

    Article  CAS  Google Scholar 

  5. Ledesma E, Rendueles M, Díaz M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: processes and prevention. Food Control. 2016;60:64–87. https://doi.org/10.1016/j.foodcont.2015.07.016.

    Article  CAS  Google Scholar 

  6. Pan Y, Deng Z, Chen Y, Zhang W, Yang Z, Zhao W, et al. Determination of benzo[: A] pyrene in smoked foods by high-performance liquid chromatography based on magnetic solid phase extraction. Anal Methods. 2017;9(39):5763–8. https://doi.org/10.1039/c7ay01421j.

    Article  CAS  Google Scholar 

  7. El Husseini M, Makkouk R, Rabaa A, Al Omar F, Jaber F. Determination of polycyclic aromatic hydrocarbons (PAH4) in the traditional Lebanese grilled chicken: implementation of new, rapid and economic analysis method. Food Anal Methods. 2018;11(1):201–14. https://doi.org/10.1007/s12161-017-0990-3.

    Article  Google Scholar 

  8. Lee JG, Kim SY, Moon JS, Kim SH, Kang DH, Yoon HJ. Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chem. 2016;199:632–8. https://doi.org/10.1016/j.foodchem.2015.12.017.

    Article  CAS  Google Scholar 

  9. Aaslyng MD, Duedahl-Olesen L, Jensen K, Meinert L. Content of heterocyclic amines and polycyclic aromatic hydrocarbons in pork, beef and chicken barbecued at home by Danish consumers. Meat Sci. 2013;93(1):85–91.

    Article  CAS  Google Scholar 

  10. Oz F, Yuzer MO. The effects of cooking on wire and stone barbecue at different cooking levels on the formation of heterocyclic aromatic amines and polycyclic aromatic hydrocarbons in beef steak. Food Chem. 2016;203:59–66. https://doi.org/10.1016/j.foodchem.2016.02.041.

    Article  CAS  Google Scholar 

  11. Wiȩk A, Tkacz K. Grilled versus fire-roasted sausage-the content of polycyclic aromatic hydrocarbons and health safety. Pol J Nat Sci. 2017;32(3):461–70.

    Google Scholar 

  12. Chung SY, Yettella RR, Kim JS, Kwon K, Kim MC, Min DB. Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food Chem. 2011;129(4):1420–6. https://doi.org/10.1016/j.foodchem.2011.05.092.

    Article  CAS  Google Scholar 

  13. Janoszka B. HPLC-fluorescence analysis of polycyclic aromatic hydrocarbons (PAHs) in pork meat and its gravy fried without additives and in the presence of onion and garlic. Food Chem. 2011;126(3):1344–53. https://doi.org/10.1016/j.foodchem.2010.11.097.

    Article  CAS  Google Scholar 

  14. Farhadian A, Jinap S, Abas F, Sakar ZI. Determination of polycyclic aromatic hydrocarbons in grilled meat. Food Control. 2010;21(5):606–10. https://doi.org/10.1016/j.foodcont.2009.09.002.

    Article  CAS  Google Scholar 

  15. Gorji ME, Ahmadkhaniha R, Moazzen M, Yunesian M, Azari A, Rastkari N. Polycyclic aromatic hydrocarbons in Iranian kebabs. Food Control. 2016;60:57–63. https://doi.org/10.1016/j.foodcont.2015.07.022.

    Article  CAS  Google Scholar 

  16. Duedahl-Olesen L, Aaslyng M, Meinert L, Christensen T, Jensen AH, Binderup ML. Polycyclic aromatic hydrocarbons (PAH) in Danish barbecued meat. Food Control. 2015;57:169–76. https://doi.org/10.1016/j.foodcont.2015.04.012.

    Article  CAS  Google Scholar 

  17. Chen BH, Lin YS. Formation of polycyclic aromatic hydrocarbons during processing of duck meat. J Agric Food Chem. 1997;45(4):1394–403. https://doi.org/10.1021/jf9606363.

    Article  CAS  Google Scholar 

  18. El Husseini M, Mourad R, Abdul Rahim H, Al Omar F, Jaber F. Assessment of polycyclic aromatic hydrocarbons (PAH4) in the traditional Lebanese grilled meat products and investigation of Broasted frying cooking method and meat size on the PAH4 formation. Polycycl Aromat Compd. 2019:1–19.

  19. Kammen DM, Lew DJ. Review of Technologies for the Production and use of charcoal. Renewable and appropriate energy laboratory report. 2005;1.

  20. Moreno MAA. Easy starter charcoal box. Google Patents; 2017.

  21. Skog K. Cooking procedures and food mutagens: a literature review. Food Chem Toxicol. 1993;31(9):655–75. https://doi.org/10.1016/0278-6915(93)90049-5.

    Article  CAS  Google Scholar 

  22. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.

    Article  Google Scholar 

  23. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 2010;8(1):18.

    Article  Google Scholar 

  24. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. Introduction to meta-analysis. Hoboken: Wiley; 2011.

    Google Scholar 

  25. Mohammadi-Sartang M, Mazloom Z, Sherafatmanesh S, Ghorbani M, Firoozi D. Effects of supplementation with quercetin on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr. 2017;71(9):1033–9.

    Article  CAS  Google Scholar 

  26. Mohammadi-Sartang M, Ghorbani M, Mazloom Z. Effects of melatonin supplementation on blood lipid concentrations: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2017.

  27. Terzi G, Ģelik TH, Nisbet C. Determination of benzo[a]pyrene in Turkish doner kebab samples cooked with charcoal or gas fire. Irish J Agr Food Res J. 2008;47(2):187–93.

    Google Scholar 

  28. Rose M, Holland J, Dowding A, Petch SRG, White S, Fernandes A, et al. Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food Chem Toxicol. 2015;78:1–9. https://doi.org/10.1016/j.fct.2014.12.018.

    Article  CAS  Google Scholar 

  29. Pan M, Van Staden J. The use of charcoal in in vitro culture–a review. Plant Growth Regul. 1998;26(3):155–63.

    Article  CAS  Google Scholar 

  30. Kronman L, Inventor Google Patents, assignee. Method and apparatus for converting a gas grill and/or charcoal burning grill2000.

  31. Szterk A. Acridine derivatives (PANHs, azaarenes) in raw, fried or grilled pork from different origins, and PANH formation during pork thermal processing. J Food Compos Anal. 2015;43:18–24.

    Article  CAS  Google Scholar 

  32. Viegas O, Novo P, Pinho O, Ferreira I. A comparison of the extraction procedures and quantification methods for the chromatographic determination of polycyclic aromatic hydrocarbons in charcoal grilled meat and fish. Talanta. 2012;88:677–83.

    Article  CAS  Google Scholar 

  33. Viegas O, Novo P, Pinto E, Pinho O, Ferreira I. Effect of charcoal types and grilling conditions on formation of heterocyclic aromatic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled muscle foods. Food Chem Toxicol. 2012;50(6):2128–34.

    Article  CAS  Google Scholar 

  34. Lijinsky W, Ross A. Production of carcinogenic polynuclear hydrocarbons in the cooking of food. Food Cosmetics Toxicol. 1967;5:343–7.

    Article  CAS  Google Scholar 

  35. Lijinsky W. The formation and occurrence of polynuclear aromatic hydrocarbons associated with food. Mutation Res/Genetic Toxicol. 1991;259(3–4):251–61.

    Article  CAS  Google Scholar 

  36. Wood J, Richardson R, Nute G, Fisher A, Campo M, Kasapidou E, et al. Effects of fatty acids on meat quality: a review. Meat Sci. 2004;66(1):21–32.

    Article  CAS  Google Scholar 

  37. Palanikumar L, Kumaraguru A, Ramakritinan C, Anand M. Toxicity, feeding rate and growth rate response to sub-lethal concentrations of anthracene and benzo [a] pyrene in milkfish Chanos chanos (Forskkal). Bull Environ Contam Toxicol. 2013;90(1):60–8.

    Article  CAS  Google Scholar 

  38. Yakovleva E, Beznosikov V, Kondratenok B, Khomichenko A. Genotoxic effects in Tradescantia plant (clone 2) induced by benzo (a) pyrene. Contemp Probl Ecol. 2011;4(6):594–9.

    Article  Google Scholar 

  39. Farhadian A, Jinap S, Hanifah H, Zaidul I. Effects of meat preheating and wrapping on the levels of polycyclic aromatic hydrocarbons in charcoal-grilled meat. Food Chem. 2011;124(1):141–6.

    Article  CAS  Google Scholar 

  40. Viegas O, Yebra-Pimentel I, Martínez-Carballo E, Simal-Gandara J, Ferreira IM. Effect of beer marinades on formation of polycyclic aromatic hydrocarbons in charcoal-grilled pork. J Agric Food Chem. 2014;62(12):2638–43.

    Article  CAS  Google Scholar 

  41. Olatunji OS, Opeolu BO, Fatoki OS, Ximba BJ. Concentration profile of selected polycyclic aromatic hydrocarbon (PAH) fractions in some processed meat and meat products. J Food Meas Charact. 2013;7(3):122–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Davoudi.

Ethics declarations

Conflict of interests

None declared.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(RAR 25 kb)

ESM 2

(XLSX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani, M., Najafi Saleh, H., Barjasteh-Askari, F. et al. The effect of gas versus charcoal open flames on the induction of polycyclic aromatic hydrocarbons in cooked meat: a systematic review and meta-analysis. J Environ Health Sci Engineer 18, 345–354 (2020). https://doi.org/10.1007/s40201-020-00457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-020-00457-0

Keywords

Navigation