Skip to main content
Log in

Performance of anaerobic membrane bioreactor treating landfill leachate

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Background

Landfill leachate has been known as non-biodegradable/hardly—biodegradable wastewater, which contains significant amount of soluble organic and inorganic compounds. However, membrane bioreactor (MBR) technology have become a more viable treatment option for complex and recalcitrant compounds compared to activated sludge systems.

Methods

This study aims at evaluating the performance of anaerobic membrane bioreactor (AnMBR) for the treatment of middle/old—aged landfill leachate (LFL).AnMBR was operated at different hydraulic retention times (HRTs) (48—12 h) and relaxation and backwashing (30 min—5 min, 5 min—0.5 min) periods. Additionally, Air stripping (pH 8, 24 g lime/L, 1.4 L/s air flow rate) as a pretreatment was evaluated prior to AnMBR.

Results

Air stripping removed about 90%, 25%, and 64% NH4+, COD (Chemical Oxygen Demand) and color (RES620), respectively. The best results were obtained in combined air stripping—AnMBR operation corresponding to 95%, and 83% overall removals of color, and COD removals, respectively. Maximum methane yield and COD removal rate in AnMBR were 0.35 L methane/g COD removed and 5 gCOD removed /L.d, respectively.

Conclusion

Pretreatment provided higher AnMBR flux that reached to 5.5LMH but increased fouling frequency due to the calcium precipitates in AnMBR which was verified with SEM—EDX analysis. Additionally, DEHP and DINP were not detected in permeate indicating AnMBR was successful for removing these micropollutants. This study showed that pretreatment clearly increased methane yield and COD removal rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brito GCB, Amaral MCS, Lange LC, Pereira RCA, Santos VL, Machado M. Treatment of landfill leachate in membranes bioreactor with yeast (Saccharomyces cerevisiae). Process Eng. 2012;44:934–8.

    Google Scholar 

  2. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH. Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Enviro Sci and Technol. 2002;32(4):297–336.

    CAS  Google Scholar 

  3. Tahmasbizadeh M, Amouei AI, Golbaz S, Farzadkia M, Kermani M, Gholami M, Asgharnia H. Simultaneous removal of chemical oxygen demand (cod) and ammonium from landfill leachate using anaerobic digesters. 2015; 33–39.

  4. Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States—I Groundwater. Sci Total Enviro. 2008;402(2–3):192–200.

    CAS  Google Scholar 

  5. Buszka PM, Yeskis DJ, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT. Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000–2002. Bulletin Enviro Contamination Toxi. 2009;82(6):653–9.

    CAS  Google Scholar 

  6. Eggen T, Moeder M, Arukwe A. Municipal landfill leachates: a significant source for new and emerging pollutants. Sci Tot Enviro. 2010;408(21):5147–57.

    CAS  Google Scholar 

  7. Chen X, Xu S, Tan T, Lee S, Cheng S, Lee F, et al. Toxicity and estrogenic endocrine disrupting activity of phthalates and their mixtures. Int J Enviro Res Public Health. 2014;11:3156–68.

    Google Scholar 

  8. Sari H, Yetilmezsoy K, Ilhan F, Yazici S, Kurt U, Apaydin O. Fuzzy-logic modeling of Fenton’s strong chemical oxidation process treating three types of landfill leachates. Enviro Sci Pollu Resear. 2013;20(6):4235–53.

    CAS  Google Scholar 

  9. Klikowska D, Klimiuk E. The effect of landfill age on municipal leachate composition. Bioresour Technol. 2008;94:5981–5.

    Google Scholar 

  10. Öztürk İ, Çevre, T.C., Müdürlüğü, OBÇYG. 2010. Atık Sektörü Mevcut Durum Değerlendirmesi Raporu.TC. Çevre ve Orman Bakanlığı Çevre Yönetimi Genel Müdürlüğü, Ankara, Türkiye.

  11. Bilad MR, Declerck P, Piasecka A, Vanysacker L, Yan X, Vankelecom IF. Treatment of molasses wastewater in a membrane bioreactor: influence of membrane pore size. Sep Purif Technol. 2011;78(2):105–12.

    CAS  Google Scholar 

  12. Visvanathan C, Ben Aim R, Parameshwaran K. Membrane separation bioreactors for wastewater treatment. Crit Rev Env Sci Technol. 2000;30:1–48.

    CAS  Google Scholar 

  13. Yang S, Yang F, Fu Z, Wang T, Lei R. Simultaneous nitrogen and phosphorus removal by a novel sequencing batch moving bed membrane bioreactor for wastewater treatment. J Hazard Mater. 2010;175(1–3):551–7.

    CAS  Google Scholar 

  14. Duan L, Tian Z, Song Y, Jiang W, Tian Y, Li S. Influence of solids retention time on membrane fouling: characterization of extracellular polymeric substances and soluble microbial products. Biofouling. 2015;31:181–91.

    CAS  Google Scholar 

  15. Deng L, Guo W, Ngo HH, Zhang HJ, Wang J, Li S, et al. Biofouling and control approaches in membrane bioreactors. Bioresour Technol. 2016;221:656–65.

    CAS  Google Scholar 

  16. Meng F, Zhang S, Oh Y, Zhou Z, Shin HS, Chae SR. Fouling in membrane bioreactors: an updated review. Water Res. 2017;114:151–80.

    CAS  Google Scholar 

  17. Le-Clech P, Chen V, Fane TA. Fouling in membrane bioreactors used in wastewater treatment. J Memb Sci. 2006;284(1–2):17–53.

    CAS  Google Scholar 

  18. Huang Z, Ong SL, Ng HY. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: effect of HRT and SRT on treatment performance and membrane fouling. Water Res. 2011;45(2):705–13.

    CAS  Google Scholar 

  19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    CAS  Google Scholar 

  20. Hu L, Zeng G, Chen G, Dong H, Liu Y, Wan J, et al. Treatment of landfill leachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO2nanoparticles. J. Hazard. Subst. 2016;301:106–18.

    CAS  Google Scholar 

  21. Boonnorat J, Chiemchaisri C, Chiemchaisri W, Yamamoto K. Removals of phenolic compounds and phthalic acid esters in landfill leachate by microbial sludge of two-stage membrane bioreactor. J. Hazard. Subst. 2014;277:93–101.

    CAS  Google Scholar 

  22. Wichitsathian B, Sindhuja S, Visvanathan C, Ahn KH. Landfill leachate treatment by yeast and bacteria based membrane bioreactors. J Environ Sci Health A Tox Hazard Subst Environ. 2004;39(9):2391–404.

    CAS  Google Scholar 

  23. Ferraz FM, Povinelli J, Vieira EM. Ammonia removal from landfill leachate by air stripping and absorption. Environ Technol. 2013;34(15):2317–26.

    CAS  Google Scholar 

  24. Gotvajn AZ, Tisler T, Zagorc-Koncan J. Comparison of different treatment strategies for industrial landfill leachate. J Hazard Subst. 2009;162(2–3):1446–56.

    CAS  Google Scholar 

  25. Setiadi T, Fairus S. Hazardous waste landfill leachate treatment using an activated sludge-membrane system. Water Sci Technol. 2003;48(8):111–7.

    CAS  Google Scholar 

  26. Xie Z, Wang Z, Wang Q, Zhu C, Wu Z. An anaerobic dynamic membrane bioreactor (AnDMBR) for landfill leachate treatment: performance and microbial community identification. Bioresour Technol. 2014;161:29–39.

    CAS  Google Scholar 

  27. Bohdziewicz J, Neczaj E, Kwarciak A. Landfill leachate treatment by means of anaerobic membrane bioreactor. Desali. 2008;221(1–3):559–65.

    CAS  Google Scholar 

  28. Yeo H, An J, Reid R, Rittmann BE, Lee HS. Contribution of liquid/gas mass-transfer limitations to dissolved methane oversaturation in anaerobic treatment of dilute wastewater. Enviro. Sci. Technol. 2015;49(17):10366–72.

    CAS  Google Scholar 

  29. Xie K, Lin HJ, Mahendran B, Bagley DM, Leung KT, Liss SN, et al. Performance and fouling characteristics of a submerged anaerobic membrane bioreactor for Kraft evaporator condensate treatment. Enviro Sci Technol. 2010;31(5):511–21.

    CAS  Google Scholar 

  30. Qin J, Joo MH, Tao G, Kekre KA. Feasibilitystudy on petrochemical wastewater treatment and reuse using submerged MBR. J Membr Sci. 2007;293(1–2):161–6.

    CAS  Google Scholar 

  31. Chang JS, Chang CY, Chen AC, Erdei L, Vigneswaran S. Long-termoperation of submerged membrane bioreactor for the treatment of high strength acrylonitrile-butadiene-styrene (ABS) wastewater: effect of hydraulic retention time. Desali. 2006;191(1–3):45–51.

    CAS  Google Scholar 

  32. Duan L, Jiang W, Song Y, Xia S, Hermanowicz SW. The characteristics of extracellular polymeric substances and soluble microbial products in moving bed biofilm reactor-membrane bioreactor. Bioresour Technol. 2013;148:436–42.

    CAS  Google Scholar 

  33. Ozgun H, Gimenez JB, Ersahin ME, Tao Y, Spanjers H, Van Lier JB. Impact of membrane addition for effluent extraction on the performance and sludge characteristics of upflow anaerobic sludge blanket reactor streating municipal wastewater. J Membr Sci. 2015;479:95–104.

    CAS  Google Scholar 

  34. Bouhabila EH, Aim RB, Buisson H. Fouling characterization in membrane bioreactors. Sep Purif Technol. 2001;22:123–32.

    Google Scholar 

  35. Jarusutthirak C, Amy G. Role of soluble microbial products (SMP) in membrane fouling and flux decline. Enviro. Sci. Technol. 2006;40(3):969–74.

    CAS  Google Scholar 

  36. Geng Z, Hall ER. A comparative study of fouling-related properties of sludge from conventional and membrane enhanced biological phosphorus removal processes. WaterRes. 2007;41(19):4329–38.

    CAS  Google Scholar 

  37. Zhu H, Han Y, Ma W, Han H, Ma W. Removal of selected nitrogenous heterocyclic compounds in biologically pretreated coal gasification wastewater (BPCGW) using the catalytic ozonation process combined with the two-stage membrane bioreactor (MBR). Bioresour Technol. 2017;245:786–93.

    CAS  Google Scholar 

  38. Sima XF, Wang YY, Shen XC, Jing XR, Tian LJ, Yu HQ, et al. Robust biochar-assisted alleviation of membrane fouling in MBRs by indirect mechanism. Sep Purif Technol. 2017;184:195–204.

    CAS  Google Scholar 

  39. Zhang H, Fan X, Wang B, Song L. Calcium ion on membrane fouling reduction and bioflocculation promotion in membrane bioreactor at high salt shock. Bioresour Technol. 2016;200:535–40.

    CAS  Google Scholar 

  40. Chen K, Wang X, Li X, Qian J, Xiao X. Impacts of sludge retention time on the performance of submerged membrane bioreactor with the addition of calcium ion. Sep Purif Technol. 2011;82:148–55.

    CAS  Google Scholar 

  41. Kim IS, Jang N. The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR). Water Res. 2006;40(14):2756–64.

    CAS  Google Scholar 

  42. Arabi S, Nakhla G. Impact of calcium on the membrane fouling in membrane bioreactors. J Membr Sci. 2008;314(1–2):134–42.

    CAS  Google Scholar 

  43. Miao R, Li X, Wu Y, Wang P, Wang L, Wu G, et al. Comparison of the roles of Ca2+ and Mg2+ on membrane fouling with humic acid: are there any differences or similarities. J Membr Sci. 2018;545:81–7.

    CAS  Google Scholar 

  44. Xu Y, Zhou Y, Wang D, Chen S, LIU J, Zijian W. Occurrence and removal of organic micropollutants in the treatment of landfill leachate by combined anaerobic-membrane bioreactor technology. J Enviro Sci. 2008;20(11):1281–7.

    CAS  Google Scholar 

  45. Fang C, Chu Y, Jiang L, Wang H, Long Y, Shen D. Removal of phthalic acid diesters through a municipal solid waste landfill leachate treatment process. J Mater Cycles Waste. 2018;20(1):585–91.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Scientific Research Project Coordination Unit of Kahramanmaras Sutcu Imam University (Project No: 2017/1—34 YLS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevser Cirik.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cirik, K., Gocer, S. Performance of anaerobic membrane bioreactor treating landfill leachate. J Environ Health Sci Engineer 18, 383–393 (2020). https://doi.org/10.1007/s40201-019-00376-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-019-00376-9

Keywords

Navigation