Skip to main content
Log in

Role of butyrogenic Firmicutes in type-2 diabetes

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objective

The aim of this review is to speculate the pre-clinical and clinical evidences indicating the association between butyrate-synthesizing firmicutes and development and progression of type 2 diabetes mellitus.

Methodology

Literature was searched using ‘Google Scholar’ and ‘PubMed’ to find out most relevant articles for the scope of this review. Information was also gathered from authentic sources such as the World Health Organisation and the International Diabetes Federation.

Results

Evidences suggest that an abnormal perturbation in the gut microbiome characterized by subsided levels of butyrate-producing bacteria may gradually result in the progression of type-2 diabetes; however, the explicit mechanisms underlying and implicating the role of specific butyrate-producing microbes remain unclear.

Conclusions

This review explicitly summarizes the role of butyrate-synthesizing firmicutes known to be reduced in the subjects with type-2 diabetes mellitus in host metabolic health and contemplates the putative and reported mechanisms underlying its implication in the pathophysiology of type-2 diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Kerner W, Definition, Classification and Diagnosis of Diabetes Mellitus. 2014;384–6.

  2. Unnikrishnan R, Anjana RM, Mohan V. Diabetes mellitus and its complications in India. Nat Publ Gr. Nature Publishing Group; 2016;12.

  3. Zimmet P, Alberti KGMM, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782–7.

    Article  CAS  PubMed  Google Scholar 

  4. WHO. Global Report on Diabetes. Glob Rep DIABETES. 2016;978:6–86.

    Google Scholar 

  5. IDF. International Diabetes Federation. IDF Diabetes Atlas 7th Ed. 2015.

  6. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:1–8.

    Article  Google Scholar 

  7. Zhang Y, Zhang H. Microbiota associated with type 2 diabetes and its related complications. Food Sci Hum Wellness. Beijing Academy of Food Sciences.; 2013;2:167–72. Available from: https://doi.org/10.1016/j.fshw.2013.09.002.

  8. Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta)genomic data. MBio. 2014;5:1–11.

    Article  Google Scholar 

  9. Nagpal R, Kumar M, Yadav AK, Hemalatha R, Yadav H, Marotta F, et al. Gut microbiota in health and disease: an overview focused on metabolic inflammation. Benef Microbes. 2016;7:181–94.

    Article  CAS  PubMed  Google Scholar 

  10. Kumar M, Nagpal R, Hemalatha R, Yadav H, Marotta F. Probiotics and Prebiotics for Promoting Health: Through Gut Microbiota. Probiotics, Prebiotics, and Synbiotics. Elsevier Inc.; 2016. Available from: https://doi.org/10.1016/B978-0-12-802189-7.00006-X.

  11. Duggal N, Kapoor S. Role of Gut Microbiota in Pathogenesis and Treatment of Type 2 Diabetes. Eurasian J Med Oncol. 2021;5:103–10.

    Google Scholar 

  12. Tanase DM, Gosav EM, Neculae E, Costea CF, Ciocoiu M, Hurjui LL, et al. Role of Gut Microbiota on Onset and Progression of. Nutrients. 2020;12.

  13. Louis P, Flint HJ. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett. 2009;294:1–8.

    Article  CAS  PubMed  Google Scholar 

  14. Louis P, Flint HJ. Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. John Wiley & Sons, Ltd; 2017;19:29–41. Available from: https://onlinelibrary.wiley.com/doi/full/https://doi.org/10.1111/1462-2920.13589.

  15. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer R. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27:104–19.

    Article  CAS  PubMed  Google Scholar 

  16. Tamanai-shacoori Z, Smida I, Bousarghin L, Loreal O, Meuric V, Fong SB, et al. Roseburia spp.: a marker of health ? Future Microbiol. 2017;12:157–70.

    Article  CAS  PubMed  Google Scholar 

  17. Fu X, Liu Z, Zhu C, Mou H, Kong Q. Nondigestible carbohydrates, butyrate, and butyrate-producing bacteria. Crit Rev Food Sci Nutr. Taylor & Francis; 2019;59:S130–52. Available from: https://doi.org/10.1080/10408398.2018.1542587.

  18. Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol. Microbiology Society; 2002;52:2141–6. Available from: https://www.microbiologyresearch.org/content/journal/ijsem/https://doi.org/10.1099/00207713-52-6-2141.

  19. Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol. J Bacteriol; 2004;186:2099–106. Available from: https://pubmed.ncbi.nlm.nih.gov/15028695/.

  20. Walker AW, Duncan SH, Louis P, Flint HJ. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol. Trends Microbiol; 2014;22:267–74. Available from: https://pubmed.ncbi.nlm.nih.gov/24698744/.

  21. Van Den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O, et al. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J 2013 75. Nature Publishing Group; 2012;7:949–61. Available from: https://www.nature.com/articles/ismej2012158.

  22. Tsukahara T, Koyama H, Okada M, Ushida K. Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria. J Nutr. J Nutr; 2002;132:2229–34. Available from: https://pubmed.ncbi.nlm.nih.gov/12163667/.

  23. Sakamoto M, Ikeyama N, Yuki M, Ohkuma M. Draft Genome Sequence of Lawsonibacter asaccharolyticus JCM 32166T, a Butyrate-Producing Bacterium, Isolated from Human Feces. Genome Announc. American Society for Microbiology (ASM); 2018;6. Available from: http://pmc/articles/PMC6013597/.

  24. Bui TPN, Shetty SA, Lagkouvardos I, Ritari J, Chamlagain B, Douillard FP, et al. Comparative genomics and physiology of the butyrate-producing bacterium Intestinimonas butyriciproducens. Environ Microbiol Rep. Environ Microbiol Rep; 2016;8:1024–37. Available from: https://pubmed.ncbi.nlm.nih.gov/27717172/.

  25. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. Taylor & Francis; 2016;7:189–200. Available from: https://doi.org/10.1080/19490976.2015.1134082.

  26. Canani RB, Costanzo M, Di, Leone L, Pedata M, Meli R, Calignano A, et al. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011;17:1519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS, Henderson C, et al. Phylogenetic Relationships of Butyrate-Producing Bacteria from the Human Gut. Appl Environ Microbiol. 2000;66:195–9.

    Article  Google Scholar 

  28. Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol. 2010;12:304–14.

    Article  CAS  PubMed  Google Scholar 

  29. Duncan GJ, Reid MD, Rucklidge GJ, Henderson D, Young P, Russell VJ, et al. A novel class of CoA-transferase involved in short- chain fatty acid metabolism in butyrate-producing human colonic bacteria Printed in Great Britain. Microbiology. 2006;152:179–85.

    Article  PubMed  Google Scholar 

  30. Lopez-Siles M, Khan TM, Duncan SH, Harmsen HJM, Garcia-Gil LJ, Flint HJ. Cultured representatives of two major phylogroups of human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, and host-derived substrates for growth. Appl Environ Microbiol. Appl Environ Microbiol; 2012;78:420–8. Available from: https://pubmed.ncbi.nlm.nih.gov/22101049/.

  31. Falony G, Verschaeren A, Bruycker F, De PV, De, Verbeke K. In Vitro Kinetics of Prebiotic Inulin-Type Fructan Fermentation by Butyrate-Producing Colon Bacteria: Implementation of Online Gas Chromatography for Quantitative Analysis of Carbon Dioxide and Hydrogen Gas Production †. Appl Environ Microbiol. 2009;75:5884–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang C-N, Liebl W, Ehrenreich A. Restriction-deficient mutants and marker-less genomic modification for metabolic engineering of the solvent producer Clostridium saccharobutylicum. Biotechnol Biofuels. 2018;11:264. Available from: https://doi.org/10.1186/s13068-018-1260-3.

  33. Bui TPN, de Vos WM, Plugge CM. Anaerostipes rhamnosivorans sp. nov., a human intestinal, butyrate-forming bacterium. Int J Syst Evol Microbiol. Int J Syst Evol Microbiol; 2014;64:787–93. Available from: https://pubmed.ncbi.nlm.nih.gov/24215821/.

  34. Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C. The common gut microbe Eubacterium hallii also contributes to intestinal propionate formation. Front Microbiol Frontiers Media S A. 2016;7:713.

    Google Scholar 

  35. Hashizume K, Tsukahara T, Yamada K, Koyama H, Ushida K. Megasphaera elsdenii JCM1772T normalizes hyperlactate production in the large intestine of fructooligosaccharide-fed rats by stimulating butyrate production. J Nutr American Institute of Nutrition. 2003;133:3187–90.

    CAS  Google Scholar 

  36. Ferreyra JA, Wu KJ, Hryckowian AJ, Bouley DM, Weimer BC, Sonnenburg JL. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe. Cell Host Microbe; 2014;16:770–7. Available from: https://pubmed.ncbi.nlm.nih.gov/25498344/.

  37. Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate Utilization and Butyryl Coenzyme A (CoA): Acetate-CoA Transferase in Butyrate-Producing Bacteria from the Human Large Intestine. Appl Environ Microbiol. 2002;68:5186–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr. 2004;91:915–23.

    Article  CAS  PubMed  Google Scholar 

  39. Morrison DJ, Mackay WG, Edwards CA, Preston T, Dodson B, Weaver LT. Butyrate production from oligofructose fermentation by the human faecal flora: what is the contribution of extracellular acetate and lactate? Br J Nutr. Cambridge University Press; 2006;96:570–7. Available from: https://www.cambridge.org/core/journals/british-journal-of-nutrition/article/butyrate-production-from-oligofructose-fermentation-by-the-human-faecal-flora-what-is-the-contribution-of-extracellular-acetate-and-lactate/5E4FA2F6E4F85A9033129FB3D1616A38.

  40. Trachsel J, Bayles DO, Looft T, Levine UY, Allen HK. Function and Phylogeny of Bacterial Butyryl Coenzyme A:Acetate Transferases and Their Diversity in the Proximal Colon of Swine. Appl Environ Microbiol. Appl Environ Microbiol; 2016;82:6788–98. Available from: https://pubmed.ncbi.nlm.nih.gov/27613689/.

  41. Khan S, Jena G. Chemico-Biological Interactions Sodium butyrate reduces insulin-resistance, fat accumulation and dyslipidemia in type-2 diabetic rat : A comparative study with metformin. Chem Biol Interact. Elsevier Ltd; 2016;254:124–34. Available from: https://doi.org/10.1016/j.cbi.2016.06.007.

  42. Khan S, Jena G. The role of butyrate, a histone deacetylase inhibitor in diabetes mellitus : experimental evidence for therapeutic intervention. Epigenomics. 2015;7:669–80.

    Article  CAS  PubMed  Google Scholar 

  43. Oiso H, Furukawa N, Suefuji M, Shimoda S, Ito A, Furumai R. Biochemical and Biophysical Research Communications The role of class I histone deacetylase (HDAC) on gluconeogenesis in liver. Biochem Biophys Res Commun. Elsevier Inc.; 2011;404:166–72. Available from: https://doi.org/10.1016/j.bbrc.2010.11.086.

  44. Kamp ME, Shim R, Nicholls AJ, Oliveira AC, Mason J, Binge L, et al. G Protein-Coupled Receptor 43 Modulates Neutrophil Recruitment during Acute Inflammation. PLoS ONE. 2016;11:1–15.

    Article  Google Scholar 

  45. McBrayer DN, Tal-Gan Y. Recent Advances in GLP-1 Receptor Agonists for Use in Diabetes Mellitus Dominic. HHS Public Access. 2018;78:292–9.

    Google Scholar 

  46. Coppola S, Avagliano C, Calignano A, Canani RB. The Protective Role of Butyrate against Obesity and Obesity-Related Diseases. Molecules. 2021;26:1–19.

    Article  Google Scholar 

  47. Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2006;8:21–34.

    Article  Google Scholar 

  48. Han J, Lin H. Intestinal microbiota and type 2 diabetes: from mechanism insights to therapeutic perspective. World J Gastroenterol. 2014;20:17737–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nagpal R, Shively CA, Register TC, Craft S, Yadav H. Gut microbiome-Mediterranean diet interactions in improving host health [ version 1; peer review : 3 approved ]. F1000Research. 2020;8:1–18.

    Google Scholar 

  50. Bhute SS, Suryavanshi MV, Joshi SM, Yajnik CS. Gut Microbial Diversity Assessment of Indian Type-2-Diabetics Reveals Alterations in Eubacteria, Archaea, and Eukaryotes. Front Microbiol. 2017;8:1–15.

    Article  Google Scholar 

  51. Ejtahed H, Hoseini-tavassol Z, Khatami S, Zangeneh M, Behrouzi A. Main gut bacterial composition differs between patients with type 1 and type 2 diabetes and non-diabetic adults. J Diabetes Metab Disord Journal of Diabetes & Metabolic Disorders. 2020;19:265–71.

    Article  CAS  Google Scholar 

  52. Zhong H, Ren H, Lu Y, Fang C, Hou G, Yang Z, et al. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine. Elsevier B.V.; 2019;47:373–83. Available from: https://doi.org/10.1016/j.ebiom.2019.08.048.

  53. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. Nature Publishing Group; 2012;490:55–60. Available from: https://doi.org/10.1038/nature11450.

  54. Das T, Jayasudha R, Chakravarthy S, Prashanthi GS, Bhargava A, Tyagi M, et al. Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy. Sci Rep. Nature Publishing Group UK; 2021;1–15. Available from: https://doi.org/10.1038/s41598-021-82538-0.

  55. Larsen N, Vogensen FK, Berg FWJ, Van Den, Nielsen DS, Sofie A, Pedersen BK, et al. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS One. 2010;5.

  56. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C. Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance. PLoS One. 2013;8.

  57. Behre CJ, Karlsson FH, Tremaroli V, Nookaew I, Nielsen J, Ba F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:4–10.

    Google Scholar 

  58. Candela M, Biagi E, Soverini M, Consolandi C, Quercia S, Severgnini M, et al. Modulation of gut microbiota dysbioses in type 2 diabetic patients by macrobiotic Ma-Pi 2 diet. Br J ofNutrition. 2016;116:80–93.

    Article  CAS  Google Scholar 

  59. Forslund K, Hildebrand F, Nielsen T, Falony G, Chatelier E, Le, Arumugam M, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. Nature Publishing Group; 2015; Available from: https://doi.org/10.1038/nature15766.

  60. Tomova A, Bukovsky I, Rembert E, Yonas W, Alwarith J. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front Nutr. 2019;6.

  61. Jia W, Zhen J, Liu A, Yuan J, Wu X, Zhao P, et al. Long-Term Vegan Meditation Improved Human Gut Microbiota. Evid Based Complement Altern Med. 2020;2020. Available from: https://doi.org/10.1155/2020/9517897.

  62. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. Nature Publishing Group; 2014;505:559–63. Available from: https://doi.org/10.1038/nature12820.

  63. Ruengsomwong S, Korenori Y, Sakamoto N, Wannissorn B, Nakayama J, Nitisinprasert S. Senior Thai Fecal Microbiota Comparison Between Vegetarians and Non-Vegetarians Using PCR-DGGE and Real-Time PCR. J Microbiol Biotechnol. 2014;24:1026–33. Available from: https://doi.org/10.4014/jmb.1310.10043.

  64. Haroa C, García-Carpinteroa S, Rangel-Zúñiga OA, Alcalá-Díaz JF, Landac BB, Clemented JC, et al. Consumption of two healthy dietary patterns restored microbiota dysbiosis in obese patients with metabolic dysfunction. Mol Nutr Food Res. 2017;1–24.

  65. Nagpal R, Shively CA, Appt SA, Register TC, Michalson KT, Vitolins MZ, et al. Gut Microbiome Composition in Non-human Primates Consuming a Western or Mediterranean Diet. Front Nutr. 2018;5:1–9.

    Article  Google Scholar 

  66. Raygan F, Rezavandi Z, Bahmani F, Ostadmohammadi V. The effects of probiotic supplementation on metabolic status in type 2 diabetic patients with coronary heart disease. Diabetol Metab Syndr. BioMed Central; 2018;1–7. Available from: https://doi.org/10.1186/s13098-018-0353-2.

  67. Moroti C, Francine L, Magri S, Costa MDR, Cavallini DCU. Effect of the consumption of a new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus. Lipids Health Dis. 2012;1–8.

  68. Sabico S, Al-mashharawi A, Al-daghri NM, Wani K, Amer OE, Hussain DS, et al. Effects of a 6-month multi-strain probiotics supplementation in endotoxemic, in fl ammatory and cardiometabolic status of T2DM patients : A randomized, double-blind, placebo-controlled trial. Clin Nutr. Elsevier Ltd; 2019;38:1561–9. Available from: https://doi.org/10.1016/j.clnu.2018.08.009.

  69. Jia L, Li D, Fen N, Shamoon M, Sun Z. Anti-diabetic Effects of Clostridium Promoting the Growth of Gut Butyrate-producing Bacteria in Type 2 Diabetic Mice. Sci Rep. 2017;1–15.

  70. Wang Y, Dilidaxi D, Wu Y, Sailike J, Sun X, Nabi X. Biomedicine & Pharmacotherapy Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db / db mice. Biomed Pharmacother. Elsevier; 2020;125:109914. Available from: https://doi.org/10.1016/j.biopha.2020.109914.

  71. Kumar M, Behare P, Mohania D, Arora S. Health-promoting probiotic functional foods. Agro Food Ind Hi Tech. 2009;29–33.

  72. Tonucci LB, Maria K, Oliveira LL, De, Machado S, Ribeiro R, Stampini H, et al. Clinical Application of Probiotics in Type 2 Diabetes Mellitus: a Randomized, Double-Blind, Placebo-Controlled Study. Clin Nutr. Elsevier Ltd; 2015; Available from: https://doi.org/10.1016/j.clnu.2015.11.011.

  73. Razmpoosh E, Javadi A, Ejtahed HS, Mirmiran P, Javadi M, Yousefinejad A. The effect of probiotic supplementation on glycemic control and lipid profile in patients with type 2 diabetes: A randomized placebo controlled trial. Diabetes Metab Syndr Clin Res Rev. Diabetes India; 2018; Available from: https://doi.org/10.1016/j.dsx.2018.08.008.

  74. Ahmadi S, Wang S, Nagpal R, Wang B, Jain S, Razazan A, et al. A human-origin probiotic cocktail ameliorates aging-related leaky gut and inflammation via modulating the microbiota / taurine / tight junction axis. JCI Insight. 2020;5:1–18. Available from: https://doi.org/10.1172/jci.insight.132055.

  75. Geirnaert A, Calatayud M, Grootaert C, Laukens D, Devriese S, Smagghe G, et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity OPEN. Sci Rep. 2017;7:1–14. www.nature.com/scientificreports/. Available from:.

    Article  CAS  Google Scholar 

  76. FAO, WHO. Guidelines for the Evaluation of Probiotics in Food. Jt FAO/WHO Work Gr Rep Draft Guidel Eval Probiotics Food. 2002;1–11.

  77. Vrieze A, Nood ELSVAN, Holleman F, Salojärvi J, Kootte RS, Bloks VW, et al. Transfer of Intestinal Microbiota From Lean Donors Increases Insulin. YGAST. Elsevier Inc.; 2012;143:913–916.e7. Available from: https://doi.org/10.1053/j.gastro.2012.06.031.

  78. Zhang L, Zhou W, Zhan L, Hou S, Zhao C, Bi T, et al. Fecal microbiota transplantation alters the susceptibility of obese rats to type 2 diabetes mellitus. Aging. 2020;12:17480–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nood E, Van, Speelman P, Nieuwdorp M, Keller J. Fecal microbiota transplantation: facts and controversies. Curr Opin Gastroenterol. 2014;30:34–9.

    Article  PubMed  Google Scholar 

  80. Binda S, Hill C, Johansen E, Obis D, Pot B, Sanders ME, et al. Criteria to Qualify Microorganisms as “ Probiotic ” in Foods and Dietary Supplements. Front Immunol. 2020;11:1–9.

    Google Scholar 

  81. Salamon D, Oleksiak AS, Kapusta P, Szopa M, Mrozińska S, Słomczyńska AHL, et al. Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on next ­ – generation sequencing of the 16S rRNA gene fragment. Pol Arch Intern Med. 2018;128:336–43.

    PubMed  Google Scholar 

Download references

Funding

This study was supported/ funded by the Indian Council of Medical Research (DHR-ICMR/GIA/05/18/2020 and ICMR No.5/4/5–12/Diab/21-NCD-III).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

James, M.M., Pal, N., Sharma, P. et al. Role of butyrogenic Firmicutes in type-2 diabetes. J Diabetes Metab Disord 21, 1873–1882 (2022). https://doi.org/10.1007/s40200-022-01081-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-022-01081-5

Keywords

Navigation