Skip to main content

Advertisement

Log in

Association of antidiabetic therapy with shortened telomere length in middle-aged Type 2 diabetic patients

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Introduction

A wide range of antidiabetic therapies have been developed to manage diabetes and limit its lifespan but each of them have adverse long-term drug reactions. This study was performed for the investigation of the possible association of antidiabetic therapy with shortened telomere length in middle-aged Type 2 diabetic patients.

Materials and methods

The subjects in this case–control study included 100 non-diabetic patients and 300 patients with Type 2 diabetes with ages in the range of 30–50 years. The treated patients were further subdivided into diabetic patients using Doanil, those using insulin and those using both the therapies. The mean telomere length was determined using the southern-blotting technique. A logistic regression analysis was performed to predict the relationship between antidiabetic therapy and shortened telomere length.

Results

The results revealed a significant increase (P < 0.01) in the fasting blood glucose and lipid profile in non-treatment diabetic patients compared to diabetic patients with treatment, and also in diabetic patients with insulin therapy, compared to diabetic patients with Doanil or both therapies. The results showed that non-treatment diabetic patients had shorter telomere length, compared to the diabetic patients with treatment, and patients treated with insulin therapy had shorter telomere length, compared to the diabetic patients with Doanil or both therapies. The logistic regression analysis confirmed that insulin therapy was closely related to diabetic risk factors and shortened telomere length.

Conclusions

The results revealed that Doanil therapy was more effective in managing diabetic risk and limiting the shortening telomere length than insulin therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  1. Al Shehri ZS. The relationship between some biochemical and hematological changes in type 2 diabetes mellitus. Biomed Res Ther. 2017;4(11):1760–74.

    Article  Google Scholar 

  2. Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275. https://doi.org/10.3390/ijms21176275.

    Article  CAS  PubMed Central  Google Scholar 

  3. Mourão-Júnior CA, Sá JR, Guedes OMS, et al. Effects of metformin on the glycemic control, lipid profile, and arterial blood pressure of type 2 diabetic patients with metabolic syndrome already on insulin. Braz J Med Biol Res. 2006;39(4):489–94. https://doi.org/10.1590/S0100-879X2006000400009.

    Article  PubMed  Google Scholar 

  4. Al-Thuwaini T. Association between polymorphism in BMP15 and GDF9 genes and impairing female fecundity in diabetes type 2. Middle East Fertility Society Journal. 2020;25(1):1–10. https://doi.org/10.1186/s43043-020-00032-5.

    Article  Google Scholar 

  5. Sabahelkhier MK, Awadllah MA, Idrees ASM, et al. A study of lipid profile levels of type II diabetes mellitus. Nova Journal of Medical and Biological Sciences. 2016;5(2):1–9. https://doi.org/10.20286/nova-jmbs-050203‏.

    Article  Google Scholar 

  6. Wang S, Ji X, Zhang Z, et al. Relationship between lipid profiles and glycemic control among patients with Type 2 diabetes in Qingdao, China. Int J Environ Res Public Health. 2020;17(15):5317. https://doi.org/10.3390/ijerph17155317.

    Article  CAS  PubMed Central  Google Scholar 

  7. Nguyen MT, Lycett K, Vryer R, et al. Telomere length: population epidemiology and concordance in Australian children aged 11–12 years and their parents. BMJ Open. 2019;9(Suppl 3):118–26. https://doi.org/10.1136/bmjopen-2017-020263.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Olokoba AB, Obateru OA, Olokoba LB. Type 2 diabetes mellitus: a review of current trends. Oman Med J. 2012;27(4):269. https://doi.org/10.5001/omj.2012.68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Majid A, Sayer SA, Farhood HB. Study of some biochemical parameters for patients with type II diabetes mellitus in Thi-Qar Governorate, Iraq. J Pharm Sci Res. 2018;10(11):2938–41.

    CAS  Google Scholar 

  10. Kim S, Parks CG, DeRoo LA, et al. Obesity and weight gain in adulthood and telomere length. Cancer Epidemiol Biomarkers Prev. 2009;18(3):816–20. https://doi.org/10.1158/1055-9965.EPI-08-0935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ramachandran V. Evaluation of lifestyle of middle age people related to obesity. Adv Obes Weight Manag Control. 2018;8(1):00216.

    Google Scholar 

  12. Xu C, Wang Z, Su X, et al. Association between leucocyte telomere length and cardiovascular disease in a large general population in the United States. Sci Rep. 2020;10(1):1–10. https://doi.org/10.1038/s41598-019-57050-1.

    Article  CAS  Google Scholar 

  13. Clemente DB, Maitre L, Bustamante M, et al. Obesity is associated with shorter telomeres in 8 year-old children. Sci Rep. 2019;9(1):1–8. https://doi.org/10.1038/s41598-019-55283-8.

    Article  CAS  Google Scholar 

  14. Wu Y, Cui W, Zhang D, et al. The shortening of leukocyte telomere length relates to DNA hypermethylation of LINE-1 in type 2 diabetes mellitus. Oncotarget. 2017;8(43):73964. https://doi.org/10.18632/oncotarget.18167.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Révész D, Milaneschi Y, Verhoeven JE, et al. Longitudinal associations between metabolic syndrome components and telomere shortening. J Clin Endocrinol Metab. 2015;100(8):3050–9. https://doi.org/10.1210/JC.2015-1995.

    Article  CAS  PubMed  Google Scholar 

  16. Herrmann W, Herrmann M. The importance of telomere shortening for atherosclerosis and mortality. Journal of Cardiovascular Development and Disease. 2020;7(3):29. https://doi.org/10.3390/jcdd7030029.

    Article  CAS  PubMed Central  Google Scholar 

  17. Yeh JK, Wang CY. Telomeres and telomerase in cardiovascular diseases. Genes. 2016;7(9):58. https://doi.org/10.3390/genes7090058.

    Article  CAS  PubMed Central  Google Scholar 

  18. Herrmann M, Pusceddu I, März W, et al. Telomere biology and age-related diseases. Clin Chem Lab Med. 2018;56(8):1210–22. https://doi.org/10.1515/cclm-2017-0870.

    Article  CAS  PubMed  Google Scholar 

  19. Tamura Y, Takubo K, Aida J, et al. Telomere attrition and diabetes mellitus. Geriatr Gerontol Int. 2016;16:66–74. https://doi.org/10.1111/ggi.12738.

    Article  PubMed  Google Scholar 

  20. Turner KJ, Vasu V, Griffin DK. Telomere biology and human phenotype. Cells. 2019;8(1):73. https://doi.org/10.3390/cells8010073.

    Article  CAS  PubMed Central  Google Scholar 

  21. Kalsi A, Singh S, Taneja N, et al. Current treatments for Type 2 diabetes, their side effects and possible complementary treatments. Int J. 2017; 10(3). https://innovareacademics.in/journals/index.php/ijpps/rt/printerFriendly/3962/8416.

  22. Merkhan MM. Effect of metformin, glibenclamide and insulin on lipid profile in type 2 diabetic patients. Tikret J Pharm Sci. 2013; 9(2). https://www.iasj.net/iasj/download/e19d0379d2064391.

  23. Chowdhury TA, Hossain B. New drugs for the treatment of type 2 diabetes. Br J Hosp Med. 2007;68(4):178–83. https://doi.org/10.12968/hmed.2007.68.4.178.

    Article  Google Scholar 

  24. VinodMahato R, Gyawali P, Raut PP, et al. Association between glycaemic control and serum lipid profile in type 2 diabetic patients: glycated haemoglobin as a dual biomarker. Biomed Res. 2011;22(3):375–80.

    CAS  Google Scholar 

  25. Liu J, Ge Y, Wu S, et al. Association between antidiabetic agents use and leukocyte telomere shortening rates in patients with type 2 diabetes. Aging. 2019;11(2):741. https://doi.org/10.18632/aging.101781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeng JB, Liu HB, Ping F, et al. Insulin treatment affects leukocyte telomere length in patients with type 2 diabetes: 6-year longitudinal study. J Diabetes Complications. 2019;33(5):363–7. https://doi.org/10.1016/j.jdiacomp.2019.02.003.

    Article  PubMed  Google Scholar 

  27. Kulkarni AS, Gubbi S, Barzilai N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 2020;23(1):15–30. https://doi.org/10.1016/j.cmet.2020.04.001.

    Article  CAS  Google Scholar 

  28. Achille ME, Michel N, Fonkeng SL, et al. Pattern of lipid profile of type 2 Diabetes patients in tertiary Hospital South-West Region of Cameroon. J Diabetes Metab. 2018; 9(5). https://doi.org/10.4172/2155-6156.1000795.

  29. Seimon RV, Wild-Taylor AL, Gibson AA, et al. Less waste on waist measurements: determination of optimal waist circumference measurement site to predict visceral adipose tissue in postmenopausal women with obesity. Nutrients. 2018;10(2):239. https://doi.org/10.3390/nu10020239.

    Article  PubMed Central  Google Scholar 

  30. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    Article  CAS  Google Scholar 

  31. Benetos A, Gardner JP, Zureik M, et al. Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension. 2004;43(2):182–5. https://doi.org/10.1161/01.HYP.0000113081.42868.f4.

    Article  CAS  PubMed  Google Scholar 

  32. Adaikalakoteswari A, Balasubramanyam M, Mohan V. Telomere shortening occurs in Asian Indian Type 2 diabetic patients. Diabet Med. 2005;22(9):1151–6. https://doi.org/10.1111/j.1464-5491.2005.01574.x.

    Article  CAS  PubMed  Google Scholar 

  33. Tramunt B, Smati S, Grandgeorge N, et al. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia. 2020;63(3):453–61. https://doi.org/10.1007/s00125-019-05040-3.

    Article  PubMed  Google Scholar 

  34. Binh TQ, Nhung BT. Prevalence and risk factors of type 2 diabetes in middle-aged women in Northern Vietnam. International Journal of Diabetes in Developing Countries. 2016;36(2):150–7. https://doi.org/10.1007/s13410-015-0372-6.

    Article  Google Scholar 

  35. Villareal DT, Apovian CM, Kushner RF, et al. Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, the obesity society. Am J Clin Nutr. 2005;82(5):923–34. https://doi.org/10.1093/ajcn/82.5.923.

    Article  CAS  PubMed  Google Scholar 

  36. Dhaliwal R, Shepherd JA, El Ghormli L, et al. Changes in visceral and subcutaneous fat in youth with type 2 diabetes in the TODAY Study. Diabetes Care. 2019;42(8):1549–59. https://doi.org/10.2337/dc18-1935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Al Mansour MA. The prevalence and risk factors of type 2 diabetes mellitus (DMT2) in a semi-urban Saudi population. Int J Environ Res Public Health. 2020;17(1):7. https://doi.org/10.3390/ijerph17010007.

    Article  Google Scholar 

  38. Murillo-Ortiz B, Albarrán-Tamayo F, Arenas-Aranda D, et al. Telomere length and type 2 diabetes in males, a premature aging syndrome. Aging Male. 2012;15(1):54–8. https://doi.org/10.3109/13685538.2011.593658.

    Article  CAS  PubMed  Google Scholar 

  39. Liu Z, Zhang J, Yan J, et al. Leucocyte telomere shortening in relation to newly diagnosed type 2 diabetic patients with depression. Oxid Med Cellular Longev. 2014;2014:673959. https://doi.org/10.1155/2014/673959.

    Article  CAS  Google Scholar 

  40. Kong CM, Lee XW, Wang X. Telomere shortening in human diseases. FEBS J. 2013;280(14):3180–93. https://doi.org/10.1111/febs.12326.

    Article  CAS  PubMed  Google Scholar 

  41. Willeit P, Raschenberger J, Heydon EE, et al. Leucocyte telomere length and risk of type 2 diabetes mellitus: new prospective cohort study and literature-based meta-analysis. PLoS ONE. 2014;9(11): e112483. https://doi.org/10.1371/journal.pone.0112483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alsharidah M, Algeffari M, Abdel-Moneim AMH, et al. Effect of combined gliclazide/metformin treatment on oxidative stress, lipid profile, and hepatorenal functions in type 2 diabetic patients. Saudi Pharm J. 2018;26(1):1–6. https://doi.org/10.1016/j.jsps.2017.11.007.

    Article  PubMed  Google Scholar 

  43. Sen S, Sinha S, Gupta KK. Comparative evaluation of effects of combined oral anti-diabetic drugs (sulfonylurea plus pioglitazone and sulfonylurea plus metformin) over lipid parameters in type 2 diabetic patients. Int J Basic Clin Pharmacol. 2013;2(3):257–63.

    Article  Google Scholar 

  44. Ramya S, Prasanna G. Biochemical studies on blood sample of diabetes mellitus patients. J Chem Pharm Res. 2015;7(6):22–6.

    CAS  Google Scholar 

  45. Tahrani AA, Barnett AH, Bailey CJ. Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat Rev Endocrinol. 2016;12(10):566. https://doi.org/10.1038/nrendo.2016.86.

    Article  CAS  PubMed  Google Scholar 

  46. Sreejesh PG, Thampi BH, Sreekumaran E. Hypoglycaemic effect of glibenclamide: A critical study on the basis of creatinine and lipid peroxidation status of streptozotocin-induced diabetic rat. Indian J Pharm Sci. 2017;79(5):768–77. https://doi.org/10.4172/pharmaceutical-sciences.1000290.

    Article  Google Scholar 

  47. Chiedozie KU, Urban S, Atsuhito N, et al. Sulfonylureas in type 2 diabetes mellitus: current evidence, conflicts and clinical implications. Niger J Med. 2017;26(1):68–75.

    Article  Google Scholar 

  48. Cho YK, Lee J, Kim HS, et al. Clinical efficacy of quadruple oral therapy for type 2 diabetes in real-world practice: a retrospective observational study. Diabetes Therapy. 2020;11(9):2029–39. https://doi.org/10.1007/s13300-020-00881-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Thrasher J. Pharmacologic management of type 2 diabetes mellitus: available therapies. Am J Cardiol. 2017;120(1):S4–16. https://doi.org/10.1016/j.amjcard.2017.05.009.

    Article  CAS  PubMed  Google Scholar 

  50. Marín-Peñalver JJ, Martín-Timón I, Sevillano-Collantes C, et al. Update on the treatment of type 2 diabetes mellitus. World J Diabetes. 2016;7(17):354. https://doi.org/10.4239/wjd.v7.i17.354.

    Article  PubMed  PubMed Central  Google Scholar 

  51. ALrefai AA, Alsalamony AM, Fatani SH, et al. Effect of variable antidiabetic treatments strategy on oxidative stress markers in obese patients with T2DM. Diabetol Metab Syndr. 2017;9(1):1–8. https://doi.org/10.1186/s13098-017-0220-6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express deep thanks to all the participants.

Author information

Authors and Affiliations

Authors

Contributions

All the works is done by the single author.

Corresponding author

Correspondence to Tahreer Mohammed Al-Thuwaini.

Ethics declarations

Ethics approval and consent to participate

The study was performed following the Helsinki Declaration and after ethics approval from the University of Al-Qasim Green (Approval No.12.10.15), and the informed consent form signed by all participants before the study.

Consent for publication

Not applicable.

Competing interests

The author declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Thuwaini, T.M. Association of antidiabetic therapy with shortened telomere length in middle-aged Type 2 diabetic patients. J Diabetes Metab Disord 20, 1161–1168 (2021). https://doi.org/10.1007/s40200-021-00835-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00835-x

Keywords

Navigation