Skip to main content

Advertisement

Log in

Nephroprotective effect of Vanillic acid in STZ-induced diabetic rats

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Purpose

To investigate the protective effect of vanillic acid (VA) in streptozotocin (STZ)-induced diabetic nephropathy (DN) in rats.

Methods

Experimental diabetes mellitus in rats was induced by intraperitoneally administration of single dose of STZ (55 mg/kg). The animals were divided into 5 groups viz., normal control, diabetic control, glimepiride (0.5 mg/kg, orally) and VA treatment (50 and 100 mg/kg, orally) groups. The treatment was started after the confirmation of hyperglycemia (> 250 mg/dl) and continued for 6 weeks. Serum glucose level, and body weight were measured weekly. At the end of study, HbA1c in whole blood, insulin, lipid profile, urea, creatinine and albumin in serum. Creatinine and albumin were measured in urine along with creatinine clearance. In addition, kidney weight and histopathology were assessed.

Results

Treatment with VA markedly attenuated STZ-induced body weight loss and hyperglycemia, along with improved lipid profile and HbA1c, without significant alteration of serum insulin levels. It also decreased urea, creatinine and increased albumin in serum. Moreover, VA, significantly reduced urine volume, urinary albumin along with marked improvement in creatinine clearance. Further, the VA treatment significantly reverse the raised levels of oxidative stress markers, pro-inflammatory and fibrotic markers viz. TNF-α, IL-1β, IL-6, TGF-β1 and NFκB activity in kidney tissue. These effects are associated with amelioration of histopathological alterations compared to diabetic control rats. While glimepiride produced similar antihyperglycemic effect but the effect on albuminuria, oxidative stress markers and cytokine levels were less significant as compared to VA (100 mg/kg).

Conclusions

In conclusion, VA exhibited nephroprotective effect through amelioration of kidney dysfunction and damage in diabetic rats. The observed nephroprotective effect of VA may be ascribed to inhibition of hyperglycemia induced oxido-inflammatory stress and necroptosis of renal tissue possibly due to its antihyperglycemic, antioxidant and anti-inflammatory actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. International Diabetes Federation. IDF. Diabetes Atlas. 9th ed. 2019. http://www.idf.org/diabetesatlas.

  2. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93:137–88.

    CAS  PubMed  Google Scholar 

  3. Donate-Correa J, Luis-Rodriguez D, Martin-Nunez E, Tagua VG, Hernandez-Carballo C, Ferri C. Inflammatory targets in diabetic nephropathy. J Clin Med. 2020;9:458. https://doi.org/10.3390/jcm9020458.

    Article  CAS  PubMed Central  Google Scholar 

  4. Varghese RT, Jialal I. Diabetic Nephropathy. :Treasure Island: StatPearls Publishing LLC. 2020, https://www.ncbi.nlm.nih.gov/books/NBK534200/.

  5. Zhu L, Han J, Yuan R, Xue L, Pang W. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol Res. 2018;51:9. https://doi.org/10.1186/s40659-018-0157-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Toth-Manikowski S, Mohamed GA. Diabetic kidney disease: pathophysiology and therapeutic targets. J Diabetes Res. 2015. https://doi.org/10.1155/2015/697010.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Powers AC. Diabetes mellitus-mechanisms of complications. In: Kasper DL, Braunwald E, Anthony S, Stephen L, Dan L, Larry J, editors. Text Book of Harrison’s Principles of Internal Medicine. 16th ed. Vol. II. New York: McGraw-Hill Medical Publishing Division; 2020. p. 2164.

    Google Scholar 

  8. Mogensen CE, Christensen CK, Vittinghus E. The stages in diabetic renal disease. With emphasis on the stage of incipient diabeticnephropathy. Diabetes. 1983;32:64–78.

    PubMed  Google Scholar 

  9. Ilyas Z, Chaiban JT, Krikorian A. Novel insights into the pathophysiology and clinical aspects of diabetic nephropathy. Rev EndocrMetabDisord. 2017;18:21–8.

    CAS  Google Scholar 

  10. Navarro-Gonzalez JF, Mora-Fernandez C. The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol. 2008;19:433–42.

    CAS  PubMed  Google Scholar 

  11. Malik S, Suchal K, Khan SI, Bhatia J, Kishore K, Dinda AK. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways. Am J Physiol Renal Physio. 2017;313:414–22.

    Google Scholar 

  12. Foggensteiner L, Mulroy S, Firth J. Management of diabetic nephropathy. J R Soc Med. 2001;94:210–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tabatabaei-Malazy O, Larijani B, Abdollahi M. Targeting metabolic disorders by natural products. J Diabetes Metab Disord. 2015;14:57. https://doi.org/10.1186/s40200-015-0184-8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aryaeian N, Sedehi SK, Arablou T. Polyphenols and their effects on diabetes management: A review. Med J Islam Repub Iran. 2017;31:134. https://doi.org/10.14196/mjiri.31.134.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Almeida IV, Cavalcante FM, Vicentini VE. Different responses of vanillic acid, a phenolic compound, in HTC cells: cytotoxicity, antiproliferative activity, and protection from DNA-induced damage. Genet Mol Res. 2016;15:4. https://doi.org/10.4238/gmr15049388.

    Article  CAS  Google Scholar 

  16. Itoh A, Isoda K, Kondoh M, Kawase M, Watari A, Kobayashi M, et al. Effect of syringic acid and vanillic acid on CCl4 induced liver injury. Biol Pharm Bull. 2010;33:983–7.

    CAS  PubMed  Google Scholar 

  17. Bernal-Mercado AT, Gutierrez-Pacheco MM, Encinas-Basurto D, Mata-Haro V, Lopez-Zavala AA, Islas-Osuna MA, et al. Synergistic mode of action of Catechin, Vanillic and Protocatechuic acids to inhibit the adhesion of uropathogenic Escherichia Coli on silicone surfaces. J Appl Microbiol. 2020;128:387–400.

    CAS  PubMed  Google Scholar 

  18. Kumar S, Prahalathan P, Raja B. Antihypertensive and antioxidant potential of vanillic acid, a phenolic compound in L-NAME-induced hypertensive rats: a dose dependence study. Redox Rep. 2011;16:208–15.

    CAS  PubMed  Google Scholar 

  19. Ji G, Sun R, Hu H, Xu F, Yu X, Veeraraghavan VP, et al. Vannilic acid ameliorates hyperglycemia-induced oxidative stress and inflammation in streptozotocin-induced diabetic rats. J King Saud Univ – Sci. 2020. Availabe from: https://doi.org/10.1016/j.jksus.2020.04.010.

  20. Chang WC, Wu JS, Chen CW, Kuo PL, Chien HM, Wang YT, et al. Protective effect of vanillic acid against hyperinsulinemia, hyperglycemia and hyperlipidemia via alleviating hepatic insulin resistance and inflammation in High-Fat Diet (HFD)-Fed Rats. Nutrients. 2015;7:9946–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vinothiya K, Ashokkumar N. Modulatory effect of vanillic acid on antioxidant status in high fat diet-induced changes in diabetic hypertensive rats. Biomed Pharmacother. 2017;87:640–52.

    CAS  PubMed  Google Scholar 

  22. Alim Z, Kilinç N, Şengül B, Beydemir S. Inhibition behaviours of some phenolic acids on rat kidney aldose reductase enzyme: an in vitro study. J Enzyme Inhib Med Chem. 2017;32:277–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sindhu G, Nishanthi E, Sharmila R. Nephroprotective effect of vanillic acid against cisplatin induced nephrotoxicity in wistar rats: a biochemical and molecular study. Environ Toxicol Pharmacol. 2015;39:392–404.

    CAS  PubMed  Google Scholar 

  24. Kim M, Kim S, Kim D, Jeon Y, Park SJ, Lee HS, et al. Vanillic acid inhibits inflammatory mediators by suppressing NF-κB in lipopolysaccharide-stimulated mouse peritoneal macrophages. Immunopharmacol Immunotoxicol. 2011;33:525–32.

    CAS  PubMed  Google Scholar 

  25. Dubey VK, Patil CR, Kamble SM, Tidke PS, Patil KR, Maniya PJ, et al. Oleanolic acid prevents progression of streptozotocin induced diabetic nephropathy and protects renal microstructures in Sprague Dawley rats. J Pharmacol Pharmacother. 2013;4:47–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tripathi AS, Mazumder PM, Chandewar AV. Sildenafil, a phosphodiesterase type 5 inhibitor, attenuates diabetic nephropathy in STZ-induced diabetic rats. J Basic Clin Physiol Pharmacol. 2016;27:57–62.

    CAS  PubMed  Google Scholar 

  27. Parasuraman S, Raveendran R, Kesavan R. Blood sample collection in small laboratory animals. J Pharmacol Pharmacother. 2010;1:87–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Eren Z, Gunal MY, Bakir EA, Coban J, Çağlayan B, Ekimci N, et al. Effects of paricalcitol and aliskiren combination therapy on experimental diabetic nephropathy model in rats. Kidney Blood Press Res. 2014;39:581–90.

    CAS  PubMed  Google Scholar 

  29. Mestry SN, Dhodi JB, Kumbhar SB, Juvekar AR. Attenuation of diabetic nephropathy in streptozotocin-induced diabetic rats by Punica granatum Linn. leaves extract. J Tradit Complement Med. 2016;7:273–80.

    PubMed  PubMed Central  Google Scholar 

  30. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.

    CAS  PubMed  Google Scholar 

  31. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5.

    CAS  PubMed  Google Scholar 

  32. Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972;47:389–94.

    CAS  PubMed  Google Scholar 

  33. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–7.

    CAS  PubMed  Google Scholar 

  34. Pelley JW, Garner CW, Little GH. A simple rapid biuret method for the estimation of protein in samples containing thiols. Anal Biochem. 1978;86:341–3.

    CAS  PubMed  Google Scholar 

  35. Cheng D, Liang B, Li Y. Antihyperglycemic effect of Ginkgo biloba extract in streptozotocin-induced diabetes in rats. Biomed Res Int. 2013. https://doi.org/10.1155/2013/162724.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Papadopoulou-Marketou N, Kanaka-Gantenbein C, Marketos N, Chrousos GP, Papassotiriou I. Biomarkers of diabetic nephropathy: A 2017 update. Crit Rev Clin Lab Sci. 2017;54:326–42.

    CAS  PubMed  Google Scholar 

  37. Kolset SO, Reinholt FP, Jenssen T. Diabetic nephropathy and extracellular matrix. J Histochem Cytochem. 2012;60:976–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nakagawa T, Sato W, Glushakova O, Heinig M, Clarke T, Campbell-Thompson M, et al. Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. J Am Soc Nephrol. 2007;18:539–50.

    CAS  PubMed  Google Scholar 

  39. King GL, Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol. 2004;122:333–8.

    CAS  PubMed  Google Scholar 

  40. Suryavanshi SV, Kulkarni YA. NF-κβ: a potential target in the management of vascular complications of diabetes. Front Pharmacol. 2017;8:798. https://doi.org/10.3389/fphar.2017.00798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ahmed S, Mundhe N, Borgohain M, Chowdhury L, Kwatra M, Bolshette N, et al. Diosmin modulates the NF-kB signal transduction pathways and downregulation of various oxidative stress markers in alloxan-induced diabetic nephropathy. Inflammation. 2016;39:1783–97.

    CAS  PubMed  Google Scholar 

  42. Sun L, Kanwar YS. Relevance of TNF-α in the context of other inflammatory cytokines in the progression of diabetic nephropathy. Kidney Int. 2015;88:662–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Garcia-Perez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. 2011;7:327–40.

    CAS  PubMed  Google Scholar 

  44. Salti T, Khazim K, Haddad R, Campisi-Pinto S, Bar-Sela G, Cohen I. Glucose induces IL-1α-dependent inflammation and extracellular matrix proteins expression and deposition in renal tubular epithelial cells in diabetic kidney disease. Front Immunol. 2020;11:1270. https://doi.org/10.3389/fimmu.2020.01270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Disc. 2012;11:633–52.

    CAS  Google Scholar 

  46. Anders HJ. Of inflammasomes and alarmins: IL-1β and IL-1α in kidney disease. J Am Soc Nephrol. 2016;27:2564–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Buraczynska M, Ksiazek P, Baranowicz-Gaszczyk I, Jozwiak L. Association of the VEGF gene polymorphism with diabetic retinopathy in type 2 diabetes patients. Nephrol Dial Transplant. 2007;22:827–32.

    CAS  PubMed  Google Scholar 

  48. Lei Y, Devarapu SK, Motrapu M, Cohen CD, Lindenmeyer MT, Moll S, Kumar SV, Anders HJ. Interleukin-1β inhibition for chronic kidney disease in obese mice with type 2 diabetes. Front Immunol. 2019;10:1223. https://doi.org/10.3389/fimmu.2019.01223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Donate-Correa J, Martín-Núñez E, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Inflammatory cytokines in diabetic nephropathy. J Diabetes Res. 2015. https://doi.org/10.1155/2015/948417.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zabad OM, Samra YA, Eissa LA. P-Coumaric acid alleviates experimental diabetic nephropathy through modulation of Toll like receptor-4 in rats. Life Sci. 2019. https://doi.org/10.1016/j.lfs.2019.116965.

    Article  PubMed  Google Scholar 

  51. Zhou B, Li Q, Wang J, Chen P, Jiang S. Ellagic acid attenuates streptozocin induced diabetic nephropathy via the regulation of oxidative stress and inflammatory signaling. Food Chem Toxicol. 2019;123:16–27.

    CAS  PubMed  Google Scholar 

  52. Zeng LF, Xiao Y, Sun L. A glimpse of the mechanisms related to renal fibrosis in diabetic nephropathy. Adv Exp Med Biol. 2019;1165:49–79.

    CAS  PubMed  Google Scholar 

  53. Hu C, Sun L, Xiao L, Han Y, Fu X, Xiong X, et al. Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy. Curr Med Chem. 2015;22:2858–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee HB, Yu MR, Yang Y, Jiang Z, Ha H. Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol. 2003;14:241-5.

    Google Scholar 

  55. Chen S, Jim B, Ziyadeh FN. Diabetic nephropathy and transforming growth factor-beta: transforming our view of glomerulosclerosis and fibrosis build-up. Semin Nephrol. 2003;23:532–43.

    CAS  PubMed  Google Scholar 

  56. Farris AB, Alpers CE. What is the best way to measure renal fibrosis? A pathologist’s perspective. Kidney Int Suppl. 2014;4:9–15.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Chairman, CT Group of Institutions, Jalandhar, Director, CT Institute of Pharmaceutical Sciences, Jalandhar and IKG- PTU (Punjab Technical University), Jalandhar, Kapurthala, India for providing necessary facilities to complete the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjoo Kamboj.

Ethics declarations

Animal ethics

Animals used for experiments were acclimatized for 10 days before starting the study. They received humane care, standard pellet chow, purified water ad libitum and were maintained under controlled environmental conditions of temperature (22 ± 3 °C) and relative humidity (55 ± 5 %) under 12 h light/dark cycle. The experimental protocol [Proposal No. IAEC-CTIPS/2019/XI/0070(PCL-D)] was approved by the Institutional Animal Ethical Committee and the experiments were performed in accordance with use and care guidelines prescribed by the Committee for the purpose of control and supervision of experiments on animals (CPCSEA), Government of India.

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Kamboj, A., Wanjari, M. et al. Nephroprotective effect of Vanillic acid in STZ-induced diabetic rats. J Diabetes Metab Disord 20, 571–582 (2021). https://doi.org/10.1007/s40200-021-00782-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00782-7

Keywords

Navigation