Skip to main content

Advertisement

Log in

Gut microbiota: a perspective of precision medicine in endocrine disorders

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Gut microbiota composition is unique in every individual, it impacts on organ functions that produce hormones. Gut microbiota composition balance is directly related to our general health status. This continual interaction between gut microbiota and endocrine organs sometimes can be considered as the etiology of diseases such as type 2 diabetes mellitus (T2DM), obesity, osteoporosis, polycystic ovary syndrome (PCOS), and thyroid diseases. Microbiota is introduced for a total collection of microbial organisms in our bodies and microbiome referred for their genome and their collective functions. Near 100 trillion microorganisms live in our body and almost all of them occupy the human gut gastrointestinal tract. Precision medicine can play a crucial role in health maintenance by affecting gut microbiota composition in every individual. It can also develop special treatments specifically for every individual. In this review, we addressed any correlation between gut microbiota and endocrine disorders including T2DM, obesity, PCOS, thyroid disorders and osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Abbreviations

MGS:

Metagenomic sequencing

T2DM:

Type 2 diabetes mellitus

PCOS:

Polycystic ovary syndrome

SCFAs:

Short-chain fatty acids

BCAA:

Branched-chain amino acid

AMPK:

Adenosine monophosphate kinase

GLP-1:

Glucagon like peptide-1

GD:

Graves’ disease

HT:

Hashimoto thyroiditis

TSRH:

Thyroid stimulating hormone receptors

TNF-α:

Tumor necrosis factor alpha

IL-1:

Interleukin-1

References

  1. Kuntz TM, Gilbert JA. Introducing the microbiome into precision medicine. Trends Pharmacol Sci. 2017;38(1):81–91.

    CAS  PubMed  Google Scholar 

  2. Hasani-Ranjbar S, Larijani B. Human Microbiome as an approach to personalized medicine. Altern Ther Health Med. 2017;23(6):8–9.

    PubMed  Google Scholar 

  3. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–20.

    PubMed  Google Scholar 

  4. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336(6086):1255–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336(6086):1268–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mallick H, Ma S, Franzosa EA, Vatanen T, Morgan XC, Huttenhower C. Experimental design and quantitative analysis of microbial community multiomics. Genome Biol. 2017;18(1):228.

    PubMed  PubMed Central  Google Scholar 

  7. Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–48.

    CAS  PubMed  Google Scholar 

  8. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A. 1998;95(12):6578–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schroeder BO, Bäckhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22(10):1079.

    CAS  PubMed  Google Scholar 

  10. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. Topographical and temporal diversity of the human skin microbiome. Science. 2009;324(5931):1190–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Montalto M, D’onofrio F, Gallo A, Cazzato A, Gasbarrini G. Intestinal microbiota and its functions. Dig Liver Dis Supplements. 2009;3(2):30–4.

    Google Scholar 

  12. Shanahan F. The gut microbiota in 2011: translating the microbiota to medicine. Nat Rev Gastro Hepat. 2012;9(2):72.

    Google Scholar 

  13. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GM, Hold G, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2016;65(2):330–9.

    PubMed  Google Scholar 

  14. Zhou L, Li X, Ahmed A, Wu D, Liu L, Qiu J, et al. Gut microbe analysis between hyperthyroid and healthy individuals. Curr Microbiol. 2014;69(5):675–80.

    CAS  PubMed  Google Scholar 

  15. Ishaq HM, Shahzad M, Wu X, Ma C, Xu J. Gut microbe analysis between asthma patients and healthy volunteers in Shaanxi Province, Xi’an, China. Pak J Zool. 2018;50(1).

  16. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9· 1 million participants. The Lancet. 2011;377(9765):557–67.

    Google Scholar 

  17. Mykhalchyshyn G, Kobyliak N, Bodnar P. Diagnostic accuracy of acyl-ghrelin and it association with non-alcoholic fatty liver disease in type 2 diabetic patients. J Diabetes Metab Disord. 2015;14(1):44.

    PubMed  PubMed Central  Google Scholar 

  18. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

    CAS  PubMed  Google Scholar 

  19. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452):99–103.

    CAS  PubMed  Google Scholar 

  20. Zhang X, Shen D, Fang Z, Jie Z, Qiu X, Zhang C, et al. Human gut microbiota changes reveal the progression of glucose intolerance. PloS One. 2013;8(8).

  21. Roy CC, Kien CL, Bouthillier L, Levy E. Short-chain fatty acids: ready for prime time? Nutr Clin Pract. 2006;21(4):351–66.

    PubMed  Google Scholar 

  22. Ussar S, Fujisaka S, Kahn CR. Interactions between host genetics and gut microbiome in diabetes and metabolic syndrome. Mol Metab. 2016;5(9):795–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sanz Y, Olivares M, Moya-Pérez Á, Agostoni C. Understanding the role of gut microbiome in metabolic disease risk. Pediatr Res. 2015;77(1–2):236–44.

    PubMed  Google Scholar 

  24. Cummings JH. Short chain fatty acids in the human colon. Gut. 1981;22(9):763.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hartstra AV, Bouter KE, Bäckhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care. 2015;38(1):159–65.

    CAS  PubMed  Google Scholar 

  26. Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity. 2010;18(1):190–5.

    PubMed  Google Scholar 

  27. Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut. 1994;35(1 Suppl):35-S8.

    Google Scholar 

  28. Vernia P, Gnaedinger A, Hauck W, Breuer R. Organic anions and the diarrhea of inflammatory bowel disease. Dig Dis Sci. 1988;33(11):1353–8.

    CAS  PubMed  Google Scholar 

  29. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.

    PubMed  Google Scholar 

  30. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–8.

    CAS  PubMed  Google Scholar 

  31. Chen X, Devaraj S. Gut microbiome in obesity, metabolic syndrome, and diabetes. Curr Diabetes Rep. 2018;18(12):129.

    CAS  Google Scholar 

  32. Creely SJ, McTernan PG, Kusminski CM, Fisher fM, Da Silva N, Khanolkar M, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol. 2007;292(3):E740-E7.

  33. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BA, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81.

    CAS  PubMed  Google Scholar 

  34. Ejtahed H-S, Soroush A-R, Angoorani P, Larijani B, Hasani-Ranjbar S. Gut microbiota as a target in the pathogenesis of metabolic disorders: a new approach to novel therapeutic agents. Horm Metab Res. 2016;48(06):349–58.

    CAS  PubMed  Google Scholar 

  35. Cardwell CR, Stene LC, Joner G, Cinek O, Svensson J, Goldacre MJ, et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia. 2008;51(5):726–35.

    CAS  PubMed  Google Scholar 

  36. Vehik K, Dabelea D. Why are C-section deliveries linked to childhood type 1 diabetes? Diabetes. 2012;61(1):36–7.

    CAS  PubMed  Google Scholar 

  37. Ejtahed HS, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V. Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition. 2012;28(5):539–43.

    CAS  PubMed  Google Scholar 

  38. Ejtahed H, Mohtadi-Nia J, Homayouni-Rad A, Niafar M, Asghari-Jafarabadi M, Mofid V, et al. Effect of probiotic yogurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. J Dairy Sci. 2011;94(7):3288–94.

    CAS  PubMed  Google Scholar 

  39. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–6. e7.

    CAS  PubMed  Google Scholar 

  40. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.

    PubMed  PubMed Central  Google Scholar 

  41. Baothman OA, Zamzami MA, Taher I, Abubaker J, Abu-Farha M. The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis. 2016;15(1):108.

    PubMed  PubMed Central  Google Scholar 

  42. Insenser M, Murri M, Del Campo R, Martínez-García M, Fernández-Durán E, Escobar-Morreale HF. Gut microbiota and the polycystic ovary syndrome: influence of sex, sex hormones, and obesity. J Clin Endocrinol Metab. 2018;103(7):2552–62.

    PubMed  Google Scholar 

  43. Pi-Sunyer FX. The obesity epidemic: pathophysiology and consequences of obesity. Obes Res. 2002;10(S12):97S–104S.

    PubMed  Google Scholar 

  44. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904.

    CAS  PubMed  Google Scholar 

  45. Zoetendal EG, Akkermans AD, Akkermans-van Vliet WM, de Visser JAG, de Vos WM. The host genotype affects the bacterial community in the human gastronintestinal tract. Microb Ecol Health Dis. 2001;13(3):129–34.

    Google Scholar 

  46. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):1115–8.

    CAS  PubMed  Google Scholar 

  47. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136(1):65–80.

    PubMed  Google Scholar 

  48. Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol. 2009;7(12):887–94.

    CAS  PubMed  Google Scholar 

  49. Crovesy L, Masterson D, Rosado EL. Profile of the gut microbiota of adults with obesity: A systematic review. Eur J Clin Nutr. 2020:1–12.

  50. Ejtahed H-S, Hasani-Ranjbar S. Neuromodulatory effect of microbiome on gut-brain axis; new target for obesity drugs. J Diabetes Metab Disord. 2019;18(1):263–5.

    PubMed  PubMed Central  Google Scholar 

  51. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–39.

    CAS  PubMed  Google Scholar 

  52. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027.

    PubMed  Google Scholar 

  53. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.

    CAS  PubMed  Google Scholar 

  55. Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS One. 2009;4(9).

  56. Furet J-P, Kong L-C, Tap J, Poitou C, Basdevant A, Bouillot J-L, et al. Differential adaptation of human gut microbiota to bariatric surgery–induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59(12):3049–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kochan P, Chmielarczyk A, Szymaniak L, Brykczynski M, Galant K, Zych A, et al. Lactobacillus rhamnosus administration causes sepsis in a cardiosurgical patient—is the time right to revise probiotic safety guidelines? Clin Microbiol Infect. 2011;17(10):1589–92.

    CAS  PubMed  Google Scholar 

  58. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, et al. Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods. 2010;7(1):1–19.

    Google Scholar 

  59. Moszak M, Szulińska M, Bogdański P. You Are What You Eat—The Relationship between Diet, Microbiota, and Metabolic Disorders—A Review. Nutrients. 2020;12(4):1096.

    CAS  PubMed Central  Google Scholar 

  60. Guo Y, Qi Y, Yang X, Zhao L, Wen S, Liu Y, et al. Association between polycystic ovary syndrome and gut microbiota. PLoS One. 2016;11(4).

  61. Yurtdaş G, Akdevelioğlu Y. A new approach to polycystic ovary syndrome: the gut microbiota. J Am Coll Nutr. 2019:1–12.

  62. Group REASPCW. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–7.

    Google Scholar 

  63. Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat Rev Endocrinol. 2011;7(4):219.

    CAS  PubMed  Google Scholar 

  64. Tremellen K, Pearce K. Dysbiosis of Gut Microbiota (DOGMA)–a novel theory for the development of Polycystic Ovarian Syndrome. Med Hypotheses. 2012;79(1):104–12.

    PubMed  Google Scholar 

  65. Haag L-M, Fischer A, Otto B, Plickert R, Kühl AA, Göbel UB, et al. Intestinal microbiota shifts towards elevated commensal Escherichia coli loads abrogate colonization resistance against Campylobacter jejuni in mice. PLoS One. 2012;7(5).

  66. McNeil N. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr. 1984;39(2):338–42.

    CAS  PubMed  Google Scholar 

  67. Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature. 2011;474(7351):298–306.

    CAS  PubMed  Google Scholar 

  68. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science. 2013;339(6123):1084–8.

    CAS  PubMed  Google Scholar 

  70. Escobar-Morreale HF, Luque-Ramírez M, San Millán JL. The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome. Endocr Rev. 2005;26(2):251–82.

    CAS  PubMed  Google Scholar 

  71. Kageyama A, Benno Y. Catenibacterium mitsuokai gen. nov., sp. nov., a gram-positive anaerobic bacterium isolated from human faeces. Int J Syst Evol Microbiol. 2000;50(4):1595–9.

    PubMed  Google Scholar 

  72. Liu R, Zhang C, Shi Y, Zhang F, Li L, Wang X, et al. Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front Microbiol. 2017;8:324.

    PubMed  PubMed Central  Google Scholar 

  73. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an androgen excess society guideline. J Clin Endocrinol Metab. 2006;91(11):4237–45.

    CAS  PubMed  Google Scholar 

  74. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Fröhlich E, Wahl R. Microbiota and thyroid interaction in health and disease. Trends Endocrinol Metab. 2019.

  76. Vought R, Brown F, Sibinovic K, Mc Daniel E. Effect of changing intestinal bacterial flora on thyroid function in the rat. Horm Metab Res. 1972;4(01):43–7.

    CAS  PubMed  Google Scholar 

  77. Navarro AM, Suen VMM, Souza IM, De Oliveira JED, Marchini JS. Patients with severe bowel malabsorption do not have changes in iodine status. Nutrition. 2005;21(9):895–900.

    CAS  PubMed  Google Scholar 

  78. Hrdina J, Banning A, Kipp A, Loh G, Blaut M, Brigelius-Flohé R. The gastrointestinal microbiota affects the selenium status and selenoprotein expression in mice. J Nutr Biochem. 2009;20(8):638–48.

    CAS  PubMed  Google Scholar 

  79. Ejtahed H-S, Angorani P, Soroush A-R, Siadat S-D, Shirzad N, Hasani-Ranjbar S, et al. Our little friends with big roles: alterations of the gut microbiota in thyroid disorders. Endocr Metab Immune Disord Drug Targets 2019.

  80. American Thyroid Association; American Association of Clinical Endocrinologists, Bahn RS, Burch HB, Cooper DS, et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid. 2011;21(6):593–646.

  81. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, et al. Guidelines for the treatment of hypothyroidism: prepared by the american thyroid association task force on thyroid hormone replacement. Thyroid. 2014;24(12):1670–751.

    PubMed  PubMed Central  Google Scholar 

  82. Weetman AP. Immunity, thyroid function and pregnancy: molecular mechanisms. Nat Rev Endocrinol. 2010;6(6):311.

    CAS  PubMed  Google Scholar 

  83. Köhling HL, Plummer SF, Marchesi JR, Davidge KS, Ludgate M. The microbiota and autoimmunity: Their role in thyroid autoimmune diseases. Clin Immunol. 2017;183:63–74.

    PubMed  Google Scholar 

  84. Ishaq HM, Mohammad IS, Guo H, Shahzad M, Hou YJ, Ma C, et al. Molecular estimation of alteration in intestinal microbial composition in Hashimoto’s thyroiditis patients. Biomed Pharmacother. 2017;95:865–74.

    CAS  PubMed  Google Scholar 

  85. Zhao F, Feng J, Li J, Zhao L, Liu Y, Chen H, et al. Alterations of the gut microbiota in Hashimoto’s thyroiditis patients. Thyroid. 2018;28(2):175–86.

    CAS  PubMed  Google Scholar 

  86. Pearce EN, Farwell AP, Braverman LE. Thyroiditis. N Engl J Med. 2003;348(26):2646–55.

    PubMed  Google Scholar 

  87. Lauritano EC, Bilotta AL, Gabrielli M, Scarpellini E, Lupascu A, Laginestra A, et al. Association between hypothyroidism and small intestinal bacterial overgrowth. J Clin Endocrinol Metab. 2007;92(11):4180–4.

    CAS  PubMed  Google Scholar 

  88. Blain H, Rolland Y, Beauchet O, Annweiler C, Benhamou C-L, Benetos A, et al. Usefulness of bone density measurement in fallers. Joint Bone Spine. 2014;81(5):403–8.

    PubMed  Google Scholar 

  89. Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19(12):1945–54.

    PubMed  Google Scholar 

  90. Neugebauer J, Heilig J, Hosseinibarkooie S, Ross BC, Mendoza-Ferreira N, Nolte F, et al. Plastin 3 influences bone homeostasis through regulation of osteoclast activity. Hum Mol Genet. 2018;27(24):4249–62.

    CAS  PubMed  Google Scholar 

  91. Kanis JA, Melton LJ III, Christiansen C, Johnston CC, Khaltaev N. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9(8):1137–41.

    CAS  PubMed  Google Scholar 

  92. Cummings SR, Kelsey JL, Nevitt MC, O’DOWD KJ. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev. 1985;7(1):178–208.

    CAS  PubMed  Google Scholar 

  93. Mahakala A, Thoutreddy S, Kleerekoper M. Prevention and treatment of postmenopausal osteoporosis. Treat Endocrinol. 2003;2(5):331–45.

    CAS  PubMed  Google Scholar 

  94. Tatangelo G, Watts J, Lim K, Connaughton C, Abimanyi-Ochom J, Borgström F, et al. The cost of osteoporosis, osteopenia, and associated fractures in Australia in 2017. J Bone Miner Res. 2019;34(4):616–25.

    PubMed  Google Scholar 

  95. David Yatsonsky I, Pan K, Shendge VB, Liu J, Ebraheim NA. Linkage of microbiota and osteoporosis: a mini literature review. World J Orthop. 2019;10(3):123.

    Google Scholar 

  96. Quach D, Britton RA. Gut microbiota and bone health. Understanding the Gut-Bone Signaling Axis. Adv Exp Med Biol. 2017;1033:47–58.

    CAS  PubMed  Google Scholar 

  97. Claesson MJ, Jeffery IB, Conde S, Power SE, O’connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178–84.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks all authors who helped writing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SSH: Write the manuscript; AN and MMO: Search and find the relevant articles; HSE: Provide guidance to the research; NS: Help to draft and submit the manuscript; HRAM: Provide guidance to the research and review the manuscript; SHJ: Provide guidance to the research; NKH: English revision and providing some comments; MH: Design the study, develop the project, and revise the manuscript. All authors will read and approved the final manuscript before submission.

Corresponding author

Correspondence to Mandana Hasanzad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors, so ethical approval is not applicable in this section.

Consent for publication

This review article does not contain data from any individual person and the consent for publication is “Not applicable” in this section.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirvani Rad, S., Nikkhah, A., Orvatinia, M. et al. Gut microbiota: a perspective of precision medicine in endocrine disorders. J Diabetes Metab Disord 19, 1827–1834 (2020). https://doi.org/10.1007/s40200-020-00593-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00593-2

Keywords

Navigation