Skip to main content

Advertisement

Log in

Stimulatory effects of Lactobacillus casei derived extracellular vesicles on toll-like receptor 9 gene expression and cytokine profile in human intestinal epithelial cells

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

A complex community of microorganisms in the gastrointestinal (GI) tract, known as the gut microbiota, exerts major effects on gene expression and cytokine profile. Extracellular vesicles (EVs) which are produced by bacteria could be sensed by Toll like receptors (TLRs). The interaction between gut microbiota and TLRs affects homeostasis and immune responses. In this study, we evaluated TLR9 gene expression and cytokines level in Caco-2 cell line treated with Lactobacillus casei as one of the gut microbiota and its EVs.

Methods

In the present study, L. casei derived EVs was extracted via ultracentrifugation. The quality control assessment included the evaluation of physicochemical characteristics of EVs. For the treatment of Caco-2 cell line, L. casei and its EVs (100 and 150 μg/mL) were used. In addition, qRT-PCR assay was carried out to evaluate the mRNA expression of TLR9 gene. ELISA assay was also performed to determine the levels of IFNγ, TNF-α, GM-CSF, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-12, IL-17A, and IL-10 cytokines.

Results

The results showed that L. casei slightly increased TLR9 gene expression in the Caco-2 cell line. It was also found that EVs at concentrations of 100 and 150 μg/mL could significantly decrease TLR9 gene expression. Furthermore, L. casei significantly increased IL-10 and IFNγ levels. Based on the findings, the level of IL-17A, as a proinflammatory cytokine, decreased by L. casei. Both concentrations of EVs decreased the level of IFNγ, while increasing the concentrations of IL-4 and IL-10. EVs from L. casei could modulate immune responses in the Caco-2 cell line. Both EVs and L. casei activated the expression and secretion of several cytokines.

Conclusions

L. casei and its EVs have pivotal role in the cross talk between gut microbiota and the host especially in the modulation of the immune system. This study shows for the first time the increasing level of anti-inflammatory cytokines by EVs released by L. casei. Based on the last studies on immunomodulatory effect of EVs on immune cells and our results in cell line level, we postulate that L. casei derived EVs could be possible candidates for the reduction of immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859–904.

    Article  CAS  Google Scholar 

  2. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313.

    Article  CAS  Google Scholar 

  3. MurAcA M, Putignani L, FIerAbrAccI A, Teti A, Perilongo G. Gut microbiota-derived outer membrane vesicles: under-recognized major players in health and disease. Discov Med. 2015;19(106):343–8.

    PubMed  Google Scholar 

  4. König J, Wells J, Cani PD, García-Ródenas CL, MacDonald T, Mercenier A, et al. Human intestinal barrier function in health and disease. Clin Transl Gastroenterol. 2016;7(10):e196.

    Article  Google Scholar 

  5. Vereecke L, Beyaert R, van Loo G. Enterocyte death and intestinal barrier maintenance in homeostasis and disease. Trends Mol Med. 2011;17(10):584–93.

    Article  CAS  Google Scholar 

  6. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499–511.

    Article  CAS  Google Scholar 

  7. Akhter N, Wu B, Memon AM, Mohsin M. Probiotics and prebiotics associated with aquaculture: a review. Fish & shellfish immunology. 2015;45(2):733–41.

    Article  CAS  Google Scholar 

  8. Yu S, Gao N. Compartmentalizing intestinal epithelial cell toll-like receptors for immune surveillance. Cell Mol Life Sci. 2015;72(17):3343–53.

    Article  CAS  Google Scholar 

  9. Fukata M, Arditi M. The role of pattern recognition receptors in intestinal inflammation. Mucosal Immunol. 2013;6(3):451.

    Article  CAS  Google Scholar 

  10. Boulangé CL, Neves AL, Chilloux J, Nicholson JK, Dumas M-E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome medicine. 2016;8(1):42.

    Article  Google Scholar 

  11. Gérard P. Gut microbiota and obesity. Cell Mol Life Sci. 2016;73(1):147–62.

    Article  Google Scholar 

  12. Galdeano CM, Perdigon G. The probiotic bacterium Lactobacillus casei induces activation of the gut mucosal immune system through innate immunity. Clinical and Vaccine Immunology. 2006;13(2):219–26. https://doi.org/10.1128/CVI.13.2.219-226.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumar A, Kumar M, Ghosh M, Ganguli A. Modeling in vitro cholesterol reduction in relation to growth of probiotic Lactobacillus casei. Microbiol Immunol. 2013;57(2):100–10.

    Article  CAS  Google Scholar 

  14. Sharma M, Devi M. Probiotics: a comprehensive approach toward health foods. Crit Rev Food Sci Nutr. 2014;54(4):537–52.

    Article  CAS  Google Scholar 

  15. Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015;13(10):620.

    Article  CAS  Google Scholar 

  16. Zitvogel L, Daillère R, Roberti MP, Routy B, Kroemer G. Anticancer effects of the microbiome and its products. Nat Rev Microbiol. 2017;15(8):465–78.

    Article  CAS  Google Scholar 

  17. Xu M, Gagné-Bourque F, Dumont M-J, Jabaji S. Encapsulation of Lactobacillus casei ATCC 393 cells and evaluation of their survival after freeze-drying, storage and under gastrointestinal conditions. J Food Eng. 2016;168:52–9.

    Article  CAS  Google Scholar 

  18. Kim J-H, Jeun E-J, Hong C-P, Kim S-H, Jang MS, Lee E-J, et al. Extracellular vesicle–derived protein from Bifidobacterium longum alleviates food allergy through mast cell suppression. Journal of Allergy and Clinical Immunology. 2016;137(2):507–16. e8.

    Article  CAS  Google Scholar 

  19. Nakao R, Hasegawa H, Ochiai K, Takashiba S, Ainai A, Ohnishi M, et al. Outer membrane vesicles of Porphyromonas gingivalis elicit a mucosal immune response. PLoS One. 2011;6(10):e26163.

    Article  CAS  Google Scholar 

  20. Kunath K, von Harpe A, Fischer D, Petersen H, Bickel U, Voigt K, et al. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J Control Release. 2003;89(1):113–25.

    Article  CAS  Google Scholar 

  21. Dimitrov Z, Gotova I, Chorbadjiyska E. In vitro characterization of the adhesive factors of selected probiotics to Caco-2 epithelium cell line. Biotechnology & Biotechnological Equipment. 2014;28(6):1079–83.

    Article  Google Scholar 

  22. Tien M-T, Girardin SE, Regnault B, Le Bourhis L, Dillies M-A, Coppée J-Y, et al. Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol. 2006;176(2):1228–37.

    Article  CAS  Google Scholar 

  23. He Y-z, Liang Z, Wu M-r, Wen Q, Deng L, C-y S, et al. Overexpression of EPS8 is associated with poor prognosis in patients with acute lymphoblastic leukemia. Leuk Res. 2015;39(6):575–81.

    Article  CAS  Google Scholar 

  24. Zhang Y, Lin A, Zhang C, Tian Z, Zhang J. Phosphorothioate-modified CpG oligodeoxynucleotide (CpG ODN) induces apoptosis of human hepatocellular carcinoma cells independent of TLR9. Cancer Immunol Immunother. 2014;63(4):357–67.

    Article  CAS  Google Scholar 

  25. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods. 2001;25(4):402–8.

  26. Dean SN, Leary DH, Sullivan CJ, Oh E, Walper SA. Isolation and characterization of Lactobacillus-derived membrane vesicles. Sci Rep. 2019;9(1):877.

    Article  Google Scholar 

  27. Castillo NA, Perdigón G, de LeBlanc ADM. Oral administration of a probiotic Lactobacillus modulates cytokine production and TLR expression improving the immune response against Salmonella enterica serovar Typhimurium infection in mice. BMC microbiology. 2011;11(1):177.

    Article  CAS  Google Scholar 

  28. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–41.

    Article  CAS  Google Scholar 

  29. Chiba Y, Shida K, Nagata S, Wada M, Bian L, Wang C, et al. Well-controlled proinflammatory cytokine responses of Peyer’s patch cells to probiotic Lactobacillus casei. Immunology. 2010;130(3):352–62.

    Article  CAS  Google Scholar 

  30. Wang Y, Xie J, Li Y, Dong S, Liu H, Chen J, et al. Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure. Eur J Nutr. 2016;55(2):821–31.

    Article  CAS  Google Scholar 

  31. Núñez IN, Galdeano CM. de LeBlanc AdM, Perdigón G. Lactobacillus casei CRL 431 administration decreases inflammatory cytokines in a diet-induced obese mouse model. Nutrition. 2015;31(7–8):1000–7.

    Article  Google Scholar 

  32. Badi SA, Khatami S, Irani S, Siadat SD. Induction Effects of Bacteroides fragilis Derived Outer Membrane Vesicles on Toll Like Receptor 2, Toll Like Receptor 4 Genes Expression and Cytokines Concentration in Human Intestinal Epithelial Cells. Cell Journal (Yakhteh). 2019;12(1).

  33. Shen Y, Torchia MLG, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe. 2012;12(4):509–20.

    Article  CAS  Google Scholar 

  34. Maerz JK, Steimle A, Lange A, Bender A, Fehrenbacher B, Frick J-S. Outer membrane vesicles blebbing contributes to B. vulgatus mpk-mediated immune response silencing. Gut Microbes. 2018;9(1):1–12.

    Article  CAS  Google Scholar 

  35. Fábrega M-J, Rodríguez-Nogales A, Garrido-Mesa J, Algieri F, Badía J, Giménez R, et al. Intestinal anti-inflammatory effects of outer membrane vesicles from Escherichia coli Nissle 1917 in DSS-experimental colitis in mice. Front Microbiol. 2017;8:1274.

    Article  Google Scholar 

  36. C-s K, Ban M, Choi E-J, Moon H-G, Jeon J-S, Kim D-K, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis. PloS one. 2013;8(10):e76520.

    Article  Google Scholar 

  37. Seo M, Park E, Ko S, Choi E, Kim S. Therapeutic effects of kefir grain Lactobacillus-derived extracellular vesicles in mice with 2, 4, 6-trinitrobenzene sulfonic acid-induced inflammatory bowel disease. J Dairy Sci. 2018;101(10):8662–71.

    Article  CAS  Google Scholar 

  38. Al-Nedawi K, Mian MF, Hossain N, Karimi K, Mao Y-K, Forsythe P, et al. Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems. FASEB J. 2014;29(2):684–95.

    Article  Google Scholar 

  39. Reza Aghasadeghi M, Sharifat Salmani A, Mehdi Sadat S, Javadi F, Memarnejadian A, Vahabpour R, et al. Application of outer membrane vesicle of Neisseria meningitidis serogroup B as a new adjuvant to induce strongly Th1-oriented responses against HIV-1. Curr HIV Res. 2011;9(8):630–5.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. Andrea Masotti for his comments and editorial support. We are also grateful to our colleagues at Mycobacteriology and Pulmonary Research Department and Microbiology Research Center of Pasteur Institute of Iran. This research received funding from the National Institute for Medical Research Development by project no.942995 and Pasteur Institute of Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Davar Siadat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargoorani, M.E., Modarressi, M.H., Vaziri, F. et al. Stimulatory effects of Lactobacillus casei derived extracellular vesicles on toll-like receptor 9 gene expression and cytokine profile in human intestinal epithelial cells. J Diabetes Metab Disord 19, 223–231 (2020). https://doi.org/10.1007/s40200-020-00495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-020-00495-3

Keywords

Navigation