Skip to main content

Advertisement

Log in

Binding of Pb-Melatonin and Pb-(Melatonin-metabolites) complexes with DMT1 and ZIP8: implications for lead detoxification

  • Research Article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

We have applied the docking methodology to characterize the binding modes of the divalent metal transporter 1 (DMT1) and the zinc transporter 8 (ZIP8) protein channels with: melatonin, some melatonin metabolites, and a few lead complexes of melatonin and its metabolites, in three different coordination modes (mono-coordinated, bi-coordinated and tri-coordinated). Our results show that bi-coordinated and tri-coordinated lead complexes prefer to bind inside the central region of ZIP8. Moreover, the interaction strength is larger compared with that of the free melatonin and melatonin metabolites. On the other hand, the binding modes with DMT1 of such complexes display lower binding energies, compared with the free melatonin and melatonin metabolites. Our results suggest that ZIP8 plays a major role in the translocation of Pb, bi or tri coordinated, when melatonin metabolites are present. Finally, we have characterized the binding modes responsible for the ZIP8 large affinities, found in bi-coordinated and tri-coordinated lead complexes. Our results show that such interactions are greater, because of an increase of the number of hydrogen bonds, the number and intensity of electrostatic interactions, and the interaction overlay degree in each binding mode. Our results give insight into the importance of the ZIP8 channel on lead transport and a possible elimination mechanism in lead detoxification processes.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O'Connor D, Hou D, Ye J, Zhang Y, Ok YS, Song Y, et al. Lead-based paint remains a major public health concern: a critical review of global production, trade, use, exposure, health risk, and implications. Environ Int. 2018;121(Pt 1):85–101.

    Article  CAS  PubMed  Google Scholar 

  2. Ericson B, Landrigan P, Taylor MP, Frostad J, Caravanos J, Keith J, et al. The global burden of Lead toxicity attributable to informal used Lead-acid battery sites. Ann Glob Health. 2016;82(5):686–99.

    Article  PubMed  Google Scholar 

  3. World Health Organization web page http://www.who.int/mediacentre/factsheets/fs379/en/. Accessed Jan 2018.

  4. Kello D, Kostial K. The effect of Milk diet on Lead metabolism in rats. Environ Res. 1973;6:355–60.

    Article  CAS  PubMed  Google Scholar 

  5. Hilburn ME. Environmental Lead in perspective. Chem Soc Rev. 1979;8:63–84.

    Article  CAS  Google Scholar 

  6. Blair J, Coleman I, Hilburn M. The transport of Lead cation across the intestinal membrane. J Physiol. 1979;286:343–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Six K, Goyer R. Experimental enhancement of Lead toxicity by low dietary calcium. J Lab Clin Med. 1970;76:933–42.

    CAS  PubMed  Google Scholar 

  8. Sears ME. Chelation: harnessing and enhancing heavy metal detoxification—a review. Sci World J. 2013;18:219840.

    Google Scholar 

  9. Hoseob L, Kim H, Chang H, Yoon M, Lee K, Choi J. Vitamin C modulates Lead excretion in rats. Anat Cell Biol. 2013;46:239–45.

    Article  Google Scholar 

  10. Hernández-Plata E, Quiroz-Compeán F, Ramírez-García G, Yáñez-Barrientos E, Rodríguez-Morales NM, Flores A, et al. Melatonin reduces Lead levels in blood, brain and bone and increases Lead excretion in rats subjected to subacute Lead Treatmet. Toxicol Lett. 2015;233:78–83.

    Article  CAS  PubMed  Google Scholar 

  11. Anttila A. International Agency for Research on Cancer. Monographs on the evaluation of carcinogenic risks to humans, vol. 87. Lyon-France: Inorganic and Organic Lead Compounds; 2006.

    Google Scholar 

  12. Limson J, Nyokong T, Daya S. The interaction of melatonin and its precursors with Aluminium, cadmium copper, Iron, Lead, and zinc: and adsorptive Voltammetric study. J Pineal Res. 1998;24:15–21.

    Article  CAS  PubMed  Google Scholar 

  13. Kim TK, Kleszczyn K, Janjetovic Z, Sweatman T, Lin Z, Li W, et al. Metabolism of melatonin and biological activity of intermediates of Metaloninergic pathway in human skin cells. FASEB J. 2013;27:2742–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim TK, Lin Z, Li W, Reiter RJ, Slominski AT. N1-Acetyl-5-Methoxykynuramine (AMK) is produced in the human epidermis and shows Antiproliferative effects. Endocrinol. 2015;156:1630–6.

    Article  CAS  Google Scholar 

  15. Martin-Renedo J, Mauriz JL, Jorquera F, Ruiz-Andres O, Gonzalez P, Gonzalez-Gallego J. Melatonin induces cell cycle arrest and apoptosis in Hepatocarcinoma HepG2 cell line. J Pineal Res. 2008;45:532–40.

    Article  CAS  PubMed  Google Scholar 

  16. Radogna F, Diederich M, Ghibelli L. Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol. 2010;80:1844–52.

    Article  CAS  PubMed  Google Scholar 

  17. Lee IC, Kim SH, Lee SM, Baek HS, Moon C, Kim SH, et al. Melatonin attenuates gentamicin-induced nephrotoxicity and oxidative stress in rats. Arch Toxicol. 2012;86:1527–36.

    Article  CAS  PubMed  Google Scholar 

  18. Lee KM, Lee IC, Kim SH, Moon C, Park SH, Shin DH, et al. Melatonin attenuates doxorubicin-induced testicular toxicity in rats. Andrologia. 2012;44:796–803.

    Article  CAS  PubMed  Google Scholar 

  19. Jang SS, Kim WD, Park WY. Melatonin exerts differential actions on X-ray radiation-induced apoptosis in Normal mice Splenocytes and Jurkat leukemia cells. J Pineal Res. 2009;47:147–55.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou H, Chen J, Lu X, Shen C, Zeng J, Chen L, et al. Melatonin protects against rotenone-induced cell injury via inhibition of Omi and Bax-mediated autophagy in Hela cells. J Pineal Res. 2012;52:120–7.

    Article  CAS  PubMed  Google Scholar 

  21. Aranda M, Albendea CD, Lostale F, Lopez-Pingarron L, Fuentes-Broto L, Martinez-Ballarin E, et al. In vivo hepatic oxidative stress because of carbon tetrachloride toxicity: protection by melatonin and Pinoline. J Pineal Res. 2010;49:78–85.

    CAS  PubMed  Google Scholar 

  22. Galano A, Tan DX, Reiter RJ. Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res. 2011;51(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  23. Gulcin I, Buyukokuroglu ME, Kufrevioglu OI. Metal chelating and hydrogen peroxide scavenging effects of melatonin. J Pineal Res. 2003;34(4):278–81.

    Article  CAS  PubMed  Google Scholar 

  24. Tan D-X, Manchester LC, Terron MP, Flores LJ, Reiter RJ. One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res. 2007;42:28–42.

    Article  CAS  PubMed  Google Scholar 

  25. Galano A, Medina ME, Tan DX, Reiter JJ. Melatonin and its metabolites as copper chelating agents and their role in inhibiting oxidative stress: a physicochemical analysis. J Pineal Res. 2015;58:107–16.

    Article  CAS  PubMed  Google Scholar 

  26. Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: from individual actions to collective protection. J Pineal Res. 2018;65:e12514.

    Article  CAS  PubMed  Google Scholar 

  27. Díaz-Cervantes E, García-Revilla MA, Soto-Arredondo K, Villaseñor-Granados T, Martínez-Alfaro M, Robles J. Computational study of some metal complexes that may form with endogenous metals and in Lead intoxication treated with EDTA, melatonin and its Main metabolites. J Mol Model. 2019;25:18.

    Article  CAS  PubMed  Google Scholar 

  28. Barbier O, Jaquillet G, Tauc M, Cougnon M, Poujeol P. Effect of heavy metals on, and handling by, the kidney. Nephron Physiol. 2005;99:105–10.

    Article  CAS  Google Scholar 

  29. Gachot B, Tauc M, Morat L, Poujeol P. Zinc uptake by proximal cells isolated from rabbit kidney: effects of cysteine and histidine. Pflugers Arch. 1991;419:583–7.

    Article  CAS  PubMed  Google Scholar 

  30. Nebert DW, Gálvez-Peralta M, Hay EB, Li H, Johansson E, Yin C, et al. ZIP14 and ZIP8 zinc/bicarbonate symporters in Xenopus oocytes: characterization of metal uptake and inhibition. Metallomics. 2012;4:1218–25.

    Article  CAS  PubMed  Google Scholar 

  31. Lui Z, Li H, Soleimani M, Girijashanker K, Reed JM, He L, et al. Cd2+ versus Zn2+ uptake by the ZIP8 HCO3—dependent symporter: kinetics, Electrogenicity and trafficking. Biochem Biophys Res Commun. 2007;365:814–20.

    Google Scholar 

  32. Wang Q, Luo W, Zhang W, Lui M, Song H, Chen J. Involvement of DMT1 +IRE in the transport of Lead in an in vitro BBB model. Toxicol in Vitro. 2011;25:991–8.

    Article  CAS  PubMed  Google Scholar 

  33. An DZ, Ai JT, Fang HJ, Sun RB, Shi Y, Wang LL, et al. Influence of Iron supplementation on DMT1 (IRE)-induced transport of Lead by brain barrier systems in vivo. Biomed Environ Sci. 2015;28:651–9.

    PubMed  Google Scholar 

  34. Meng XY, Zhang HX, Mezei M, Cui M. Moleular docking: Apowerful approach for structure-based drug discovery. Curr Comput Aided Drug Des. 2011;7:146–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Berman HM, Westbrook J, Feng Z, Gilliland G, Baht TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sander C, Schneider R. Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins Struct Funct Genet. 1991;9:56–68.

    Article  CAS  PubMed  Google Scholar 

  37. Blundell TL, Sibanda BL, Sternberg MJE, Thornton JM. Knowledge-based prediction of protein structures and the Design of Novel Molecules. Nature. 1987;326:347–52.

    Article  CAS  PubMed  Google Scholar 

  38. Nicklaus MC, Wang S, Driscoll JS, Milne GW. Conformational changes of small molecules binding to proteins. Bioorg Med Chem. 1995;3:411–28.

    Article  CAS  PubMed  Google Scholar 

  39. Oprea TI. Property distribution of drug-related chemical databases. J Comput Aided Mol Des. 2000;14:251–64.

    Article  CAS  PubMed  Google Scholar 

  40. Yang Z. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9:40–8.

    Article  CAS  Google Scholar 

  41. Ambrish R, Alper K, Yang Z. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5:725–38.

    Article  CAS  Google Scholar 

  42. Ambrish R, Jianyi Y, Yang Z. COFACTOR: An accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res. 2012;40:W471–7.

    Article  CAS  Google Scholar 

  43. Molegro Aps (2011) M.V.D., version 2011.5.0, http://www.molegro.com. Accessed Jan 2018.

  44. Gehlhaar DK, Verkhivker G, Rejto PA, Fogel DB, Fogel LJ, Fogel LJ, Freer ST (1995) Docking conformationally flexible small molecules into a protein binding site through evolutionary programming. Proceedings of the Fourth International Conference on Evolutionary Programming 615-627.

  45. Gehlhaar DK, Bouzida D, Rejto PA (1998) Fully automated and rapid flexible docking of inhibitors covalently bounded to serine proteases. Proceedings of the Seventh International Conference on Evolutionary Programming 449-461.

  46. Yang JM, Chen CC. GEMDOCK: a generic evolutionary method for molecular docking. Proteins. 2004;55:288–304.

    Article  CAS  PubMed  Google Scholar 

  47. te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJA, Snijders JG, et al. Chemistry with ADF. J Comput Chem. 2001;22:931–67.

    Article  Google Scholar 

  48. Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ. Towards an order-N DFT method. Theor Chem Accounts. 1998;99:391–403.

    Google Scholar 

  49. ADF2016, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com. Accessed Jan 2018.

  50. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77:3865–38.

    Article  CAS  PubMed  Google Scholar 

  51. van Lenthe E, Baerends EJ. Optimized slater-type basis sets for the elements 1-118. J Comput Chem. 2003;24:1142–56.

    Article  CAS  PubMed  Google Scholar 

  52. Pye CC, Ziegler T. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. Theor Chem Accounts. 1999;101:396–408.

    Article  CAS  Google Scholar 

  53. van Lenthe E, Baerends EJ, Snijders JG. Relativistic regular two-component Hamiltonians. J Chem Phys. 1993;99:4597–610.

    Article  Google Scholar 

  54. van Lenthe E, Baerends EJ, Snijders JG. Relativistic Total energy using regular approximations. J Chem Phys. 1994;101:9783–92.

    Article  Google Scholar 

  55. van Lenthe E, Ehlers AE, Baerends EJ. Geometry optimization in the zero order regular approximation for relativistic effects. J Chem Phys. 1999;110:8943–53.

    Article  Google Scholar 

  56. Wiederstein M, Sippl MJ. ProSA-web: interactive web Service for the Recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007;35:407–10.

    Article  Google Scholar 

Download references

Acknowledgments

National Laboratory UG-UAA-CONACyT (123732) is acknowledged for computing resources. Authors are thankful to DAIP-Universidad de Guanajuato (“Convocatoria Institucional de Apoyo a la Investigación Científica 2016-2017”, for funding through project No. 736/2016) and PRODEP (SEP-México) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. García-Revilla.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 8299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villaseñor-Granados, T., Díaz-Cervantes, E., Soto-Arredondo, K.J. et al. Binding of Pb-Melatonin and Pb-(Melatonin-metabolites) complexes with DMT1 and ZIP8: implications for lead detoxification. DARU J Pharm Sci 27, 137–148 (2019). https://doi.org/10.1007/s40199-019-00256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-019-00256-5

Keywords

Navigation