Skip to main content
Log in

Effect of Ni Interlayer on Cavitation Erosion Resistance of NiTi Cladding by Tungsten Inert Gas (TIG) Surfacing Process

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The NiTi cladding with/without Ni interlayer was prepared on stainless steel (SS) by tungsten inert gas (TIG) surfacing process, aiming at achieving good cavitation erosion resistance. The ranking according to the cavitation erosion resistance is NiTi plate > NiTi–Ni–TIG cladding > NiTi–TIG cladding > SS. The better cavitation erosion resistance of NiTi–TIG and NiTi–Ni–TIG claddings than SS substrate is due to their higher micro-hardness and superelasticity. Furthermore, the existence of Ni interlayer can decrease the amount of brittle intermetallic compounds, such as Fe2Ti, and inhibit the crack generation, which results in the higher cavitation erosion resistance of NiTi–Ni–TIG compared with NiTi–TIG cladding. Thus, the cavitation erosion resistance of NiTi cladding prepared by TIG surfacing process can be improved by employing Ni interlayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.K. Sreedhar, S.K. Albert, A.B. Pandit, Wear 372–373, 196 (2017)

    Google Scholar 

  2. Y.X. Qiao, Z.H. Tian, X. Cai, J. Chen, Y.X. Wang, Q.N. Song, Tribol. Lett. 67, 9 (2018)

    Google Scholar 

  3. Y.X. Qiao, S. Wang, B. Liu, Y.G. Zheng, H.B. Li, Z.H. Jiang, Acta Metall. Sin. 52, 240 (2016)

    Google Scholar 

  4. M. Bitzer, N. Rauhut, G. Mauer, M. Bram, R. Vassen, H.P. Buchkremer, Wear 328, 377 (2015)

    Google Scholar 

  5. Y.X. Qiao, X. Cai, J. Cui, Y.B. Tang, H.B. Li, Z.H. Jiang, Mater. Tehnol. 51, 938 (2017)

    Google Scholar 

  6. J.S. Carlton, Marine Propellers and Propulsion, 1st edn. (Butterworth Heinemann, Oxford, 1994), p. 199

    Google Scholar 

  7. Q.N. Song, N. Xu, Y.F. Bao, J.W. Gu, Y.G. Zheng, Y.X. Qiao, Acta Metall. Sin. (Engl. Lett.) 30, 720 (2017)

    Google Scholar 

  8. Y.N. Zhao, S.Y. Jiang, Y.Q. Zhang, Acta Metall. Sin. (Engl. Lett.) 30, 770 (2017)

    Google Scholar 

  9. R.H. Richman, Wear 157, 407 (1992)

    Google Scholar 

  10. I. Kaya, H. Tobe, H.E. Karaca, Acta Metall. Sin. (Engl. Lett.) 29, 286 (2016)

    Google Scholar 

  11. S.K. Wu, H.C. Lin, C.H. Yeh, Wear 244, 93 (2000)

    Google Scholar 

  12. L.M. Yang, A.K. Tieu, D.P. Dunne, S.W. Huang, H.J. Li, D. Wexler, Wear 267, 243 (2009)

    Google Scholar 

  13. V. Stolyarov, Acta Metall. Sin. (Engl. Lett.) 31, 1310 (2018)

    Google Scholar 

  14. F.T. Cheng, P. Shi, H.C. Man, Scr. Mater. 45, 1089 (2001)

    Google Scholar 

  15. C. Elahinia, Shape Memory Alloy Actuators: Design, Fabrication, and Experimental Evaluation, 6th edn. (Wiley, Ltd, 2016), pp. 191–199

    Google Scholar 

  16. M.M. Verdian, K. Raeissi, M. Salehi, Corros. Sci. 52, 1059 (2010)

    Google Scholar 

  17. M.M. Verdian, K. Raeissi, M. Salehi, J. Alloys Compd. 507, 46 (2010)

    Google Scholar 

  18. H. Hitoshi, I. Takashi, M. Akira, S. Hirofumi, Wear 231, 278 (1999)

    Google Scholar 

  19. H. Hitoshi, I. Takashi, S. Hirofumi, Surf. Coat. Technol. 139, 100 (2001)

    Google Scholar 

  20. X. Zhang, J.H. Sui, Y.C. Lei, W. Cai, Acta Metall. Sin. (Engl. Lett.) 30, 1235 (2017)

    Google Scholar 

  21. S. Tria, O. Elkedim, R. Hamzaoui, X. Guo, F. Bernard, N. Millot, Powder Technol. 210, 188 (2011)

    Google Scholar 

  22. C. DeCrescenzo, D. Karatza, D. Musmarra, S. Chianese, T. Baxevanis, P.T. Dalla, Adv. Mater. Sci. Eng. 2018, 10 (2018)

    Google Scholar 

  23. C.J. Huang, X.C. Yan, W.Y. Li, W.B. Wang, C. Verdy, M.P. Planche, Appl. Surf. Sci. 451, 66 (2018)

    Google Scholar 

  24. Z.P. Shi, J.Q. Wang, Z.B. Wang, Y.X. Qiao, T.Y. Xiong, Y.G. Zheng, Coatings 8, 346 (2018)

    Google Scholar 

  25. R.H. Richman, Wear 181–183, 85 (1992)

    Google Scholar 

  26. T.T. Zhang, W.X. Wang, J. Zhou, Acta Metall. Sin. (Engl. Lett.) 30, 991 (2017)

    Google Scholar 

  27. K.Y. Chiu, F.T. Cheng, H.C. Man, Mater. Sci. Eng., A 407, 281 (2005)

    Google Scholar 

  28. F.T. Cheng, K.H. Lo, H.C. Man, Mater. Sci. Eng., A 380, 29 (2004)

    Google Scholar 

  29. Z. Zeng, B. Panton, J.P. Oliveira, A. Han, Y.N. Zhou, Smart Mater. Struct. 24, 125036 (2015)

    Google Scholar 

  30. J.P. Oliveira, B. Panton, Z. Zeng, C.M. Andrei, Y. Zhou, R.M. Miranda, F.M. BrazFernandes, Acta Mater. 105, 15 (2016)

    Google Scholar 

  31. F.T. Cheng, K.H. Lo, H.C. Man, Surf. Coat. Technol. 172, 315 (2003)

    Google Scholar 

  32. D.K. Zhang, G.Q. Wang, A.P. Wu, Acta Metall. Sin. (Engl. Lett.) 32, 694 (2019)

    Google Scholar 

  33. H.M. Li, D.Q. Sun, X.L. Cai, P. Dong, W.Q. Wang, Mater. Des. 39, 293 (2012)

    Google Scholar 

  34. J. Pouquet, R.M. Miranda, L. Quintino, S. Williams, Int. J. Adv. Manuf. Technol. 61, 212 (2011)

    Google Scholar 

  35. S. Fukumoto, T. Inoue, S. Mizuno, K. Okita, T. Tomita, A. Yamamoto, Sci. Technol. Weld. Join. 15, 130 (2013)

    Google Scholar 

  36. Y.X. Qiao, J. Chen, H.L. Zhou, Y.X. Wang, Q.N. Song, H.B. Li, Z.B. Zheng, Wear 424–425, 77 (2019)

    Google Scholar 

  37. R. Liu, D.Y. Li, Mater. Sci. Technol. 16, 332 (2013)

    CAS  Google Scholar 

  38. ASTM G32-10 Standard Test Method for Cavitation Erosion Using Vibratory Apparatus; ASTM International: West Conshohocken, PA, USA, 2010

  39. H. Li, D. Sun, X. Cai, P. Dong, X. Gu, Opt. Laser Technol. 45, 460 (2013)

    Google Scholar 

  40. Q. Li, Y. Zhu, J. Guo, J. Mater. Process. Technol. 249, 548 (2017)

    Google Scholar 

  41. C. van der Eijk, H. Fostervoll, Z.K. Sallom, O.M. Akselsen, Plasma welding of NiTi to NiTi, stainless steel and Hastelloy C276. Join. Adv. Spec. Mater. 6, 129 (2004)

    Google Scholar 

  42. G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64, 538 (1981)

    Google Scholar 

  43. J.R. Weng, J.T. Chang, K.C. Chen, J.L. He, Wear 255, 224 (2003)

    Google Scholar 

  44. S. Wang, K. Wang, G. Chen, Z. Li, Z. Qin, X. Lu, Calphad. 56, 168 (2017)

    Google Scholar 

  45. G. Cacciamani, K.J. De, R. Ferro, U.E. Klotz, J. Lacaze, P. Wollants, Intermetallics 14, 1325 (2006)

    Google Scholar 

  46. J.S. Kirkaldy, L.C. Brown, Can. Metall. Q. 2, 115 (1963)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Hang Liang and Zhaoxuan Zhang for preparing NiTi cladding by TIG surfacing process. This work was supported by the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province (No. 2017CL18) and The Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Number XDA13040500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng-Bin Wang or Yan-Xin Qiao.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, ZP., Wang, ZB., Wang, JQ. et al. Effect of Ni Interlayer on Cavitation Erosion Resistance of NiTi Cladding by Tungsten Inert Gas (TIG) Surfacing Process. Acta Metall. Sin. (Engl. Lett.) 33, 415–424 (2020). https://doi.org/10.1007/s40195-019-00947-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00947-7

Keywords

Navigation