Skip to main content
Log in

Modeling the Dynamic Recrystallization of Mg–11Gd–4Y–2Zn–0.4Zr Alloy Considering Non-uniform Deformation and LPSO Kinking During Hot Compression

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Hot compression tests of Mg–11Gd–4Y–2Zn–0.4Zr alloy (GWZK114) were conducted at a deformation temperature range of 300–500 °C and a strain rate range of 0.01–10.0 s−1. Based on systematic microstructure observation, it is confirmed that long period stacking ordered (LPSO) phase displays essential and evolving roles on the dynamic recrystallization (DRX) behavior. The results indicate that the plastic deformation is mainly coordinated by simultaneous exist of LPSO kinking of lamella 14H-LPSO phase and DRX at 350–450 °C, and DRX at 500 °C. Further, it is found that the LPSO kinking induced during 350–450 °C can delay the DRX. A phenomenological DRX model of GWZK114 alloy is established to be \(X_{\text{DRX}} = 1 - \exp [ - 0.5(\frac{{\varepsilon - \varepsilon_{\text{c}} }}{{\varepsilon^{*} }})^{0.91} ]\). Non-uniform distribution of plastic strain during compression was considered via finite element method and it ensures a good prediction of DRX fraction under a large plastic strain. Meanwhile, an enhanced DRX model, taking its formulation as \(X_{\text{DRX}} = \{ 1 - \exp [ - 0.5(\frac{{\varepsilon - \varepsilon_{c} }}{{\varepsilon^{*} }})^{0.91} ]\} (\frac{T}{226.8} - 1)^{n}\), \(n = 3.82\dot{\varepsilon }^{0.083}\), is proposed for the first time to capture the hindering effect of 14H-LPSO kinking on DRX behavior. The predicted results of this enhanced DRX model agree well with the experimental cases, where 14H-LPSO kinking is dominated or partially involved (300–450 °C). Besides, a size model of DRX grains is also established and can depict the evolution of DRX grain size for all the investigated compression conditions with accounting for temperature rising at high strain rates (5 s−1 and 10 s−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T.M. Pollock, Science 328, 986–987 (2010)

    Article  Google Scholar 

  2. J.W. Dai, X.B. Zhang, Y. Fei, Z.Z. Wang, H.M. Sui, Acta Metall. Sin. (Engl. Lett.) 31, 865–872 (2018)

    Article  Google Scholar 

  3. K. Hagihara, A. Kinoshita, Y. Yamasaki, M. Yamasaki, Y. Kawamura, Mater. Sci. Eng. A 560, 71–79 (2013)

    Article  Google Scholar 

  4. M. Yamasaki, Y. Kawamura, Scr. Mater. 60, 264–267 (2009)

    Article  Google Scholar 

  5. T. Itoi, K. Takahashi, H. Moriyama, H. Moriyama, M. Hirohashi, Scr. Mater. 59, 1155–1158 (2008)

    Article  Google Scholar 

  6. Y. Kawamura, T. Kasahara, S. Izumi, M. Yamasaki, Scr. Mater. 55, 453–456 (2006)

    Article  Google Scholar 

  7. K. Hagihara, A. Kinoshita, Y. Sugino, M. Yamasaki, Y. Kawamura, H.Y. Yasuda, Y. Umakoshi, Acta Mater. 58, 6282–6293 (2010)

    Article  Google Scholar 

  8. K. Hagihara, M. Honnami, R. Matsumoto, Y. Fukusumi, H. Izuno, M. Yamasaki, T. Okamoto, T. Nakano, Y. Kawamura, Mater. Trans. 56, 943–951 (2015)

    Article  Google Scholar 

  9. X.H. Shao, Z.Q. Yang, X.L. Ma, Acta Mater. 58, 4760–4771 (2010)

    Article  Google Scholar 

  10. E. Oñorbe, G. Garcés, P. Pérez, P. Adeva, J. Alloys Compd. 47, 1085–1093 (2012)

    Google Scholar 

  11. C. Xu, T. Nakata, X. Qiao, M. Zheng, K. Wu, S. Kamado, Sci Rep. 7, 40846 (2017)

    Article  Google Scholar 

  12. D. Zhang, Z. Tan, Q. Huo, Z. Xiao, Z. Fang, X. Yang, Mater. Sci. Eng. A 715, 389–403 (2018)

    Article  Google Scholar 

  13. B.J. Lv, J. Peng, Y. Peng, A.T. Tang, F.S. Pan, Mater. Sci. Eng. A 579, 209–216 (2013)

    Article  Google Scholar 

  14. W. Yuan, S.K. Panigrahi, J.Q. Su, R.S. Mishra, Scr. Mater. 65, 994–997 (2011)

    Article  Google Scholar 

  15. J.A. Del Valle, F. Carreño, O.A. Ruano, Acta Mater. 54, 4247–4259 (2006)

    Article  Google Scholar 

  16. M.R. Barnett, Z. Keshavarz, A.G. Beer, D. Atwell, Acta Mater. 52, 5093–5103 (2004)

    Article  Google Scholar 

  17. X.H. Huang, K. Suzuki, Y. Chino, M. Mabuchi, J. Alloys Compd. 632, 94–102 (2015)

    Article  Google Scholar 

  18. T. Homma, N. Kunito, S. Kamado, Scr. Mater. 61, 644–647 (2009)

    Article  Google Scholar 

  19. I. Schindler, P. Kawulok, E. Hadasik, D. Kuc, JMEPEG 22, 890–897 (2013)

    Article  Google Scholar 

  20. Z. Yang, Y.C. Guo, J.P. Li, F. He, F. Xia, M.X. Liang, Mater. Sci. Eng. A 485, 487–491 (2008)

    Article  Google Scholar 

  21. G.Z. Quan, Y. Shi, Y.X. Wang, B.S. Kang, W.T. Ku, W.J. Song, Mater. Sci. Eng. A 528, 8051–8059 (2011)

    Article  Google Scholar 

  22. J. Liu, Z.S. Cui, L.Q. Ruan, Mater. Sci. Eng. A 529, 300–310 (2011)

    Article  Google Scholar 

  23. E.I. Poliak, J.J. Jonas, Acta Mater. 44, 127–136 (1996)

    Article  Google Scholar 

  24. A. Najafizadeh, J.J. Jonas, ISIJ Int. 46, 1679–1684 (2006)

    Article  Google Scholar 

  25. B.J. Lv, J. Peng, L.L. Zhu, Y.J. Wang, Mater. Sci. Eng. A 599, 150–159 (2014)

    Article  Google Scholar 

  26. J. Yu, Z. Zhang, Q. Wang, X. Yin, J. Cui, H. Qi, J. Alloys Compd. 704, 382–389 (2017)

    Article  Google Scholar 

  27. G. Zhang, Z. Zhang, Y. Du, Z. Yan, X. Che, Materials 11, 2092 (2018)

    Article  Google Scholar 

  28. Y. Du, Dissertation, North University of China, 2018 (in Chinese)

  29. C.J. Wang, Z.G. Zhou, A. Holmqvist, H. Zhang, Y. Li, G. Adell, X.F. Sun, AIMM 17, 530–535 (2009)

    Google Scholar 

  30. X.J. Zhou, C.M. Liu, Y.H. Gao, S.N. Jiang, X.Z. Han, Z.Y. Chen, Metall. Mater. Trans. A 48, 3060–3072 (2017)

    Article  Google Scholar 

  31. C.M. Sellars, Mater. Sci. Technol. 6, 1072–1081 (1990)

    Article  Google Scholar 

  32. C.M. Sellars, Metal Sci. 13, 187–194 (1979)

    Article  Google Scholar 

  33. T. Chandra, J.J. Jonas, Metall. Trans. 1, 2079–2082 (1970)

    Article  Google Scholar 

  34. D.R. Askeland, W.J. Wright, Essentials of Materials Science & Engineering (Cengage Learning, Singapore, 2013), p. 233

    Google Scholar 

  35. J. Su, M. Sanjari, A.S.H. Kabir, I.H. Jung, J.J. Jonas, S. Yue, H. Utsunomiya, Mater. Sci. Eng. A 636, 582–592 (2015)

    Article  Google Scholar 

  36. C.J. Chen, Q.D. Wang, D.D. Yin, J. Alloys Compd. 487, 560–563 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Cheng.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, HX., Chen, SF., Cheng, M. et al. Modeling the Dynamic Recrystallization of Mg–11Gd–4Y–2Zn–0.4Zr Alloy Considering Non-uniform Deformation and LPSO Kinking During Hot Compression. Acta Metall. Sin. (Engl. Lett.) 32, 1122–1134 (2019). https://doi.org/10.1007/s40195-019-00898-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00898-z

Keywords

Navigation