Skip to main content

Advertisement

Log in

Nanomedicine in Cancer Clinics: Are We There Yet?

  • Nanoparticle-based Drug Delivery (M Gogoi, Section Editor)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of Review

Despite preclinical success of nanomedicine for anticancer activity, the clinical success of the same has been very limited. This review evaluates and discusses the therapeutic potential and pitfalls of clinically undergoing and successful nanoformulations in treatment of globally prevalent cancers.

Recent Findings

Cancer is the second leading cause of disease-related deaths all over the world. Alongside the FDA approved indication, chemotherapeutic nanoformulations like Abraxane and Doxil are alternatively evaluated in other cancers providing positive results.

Summary

The review gives an update on the nanoformulations, which are currently in phase I and phase II clinical trials and approved for the treatment of prevalent cancers. Emphasis on the immediate need for reforming the guidelines for nanoformulations allows significant advances in the field of cancer nano-therapy in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Mattiuzzi C, Lippi G. Current cancer epidemiology. J Epidemiol Glob Health. 2019;9(4):217–22. https://doi.org/10.2991/jegh.k.191008.001This paper provides the most recent data regarding cancer statistics globally.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Organization WH. Global Health Estimates 2015: disease burden by cause, age, sex, by country and by region, 2000–2015. Geneva. 2016;2018.

  3. •• Mathur P, Sathishkumar K, Chaturvedi M, Das P, Sudarshan KL, Santhappan S, et al. Cancer statistics, 2020: report from National Cancer Registry Programme, India. JCO Glob Oncol. 2020;6:1063–75. https://doi.org/10.1200/GO.20.00122This is a report on cancer statistics of India highlighting tobacco use associated cancer.

    Article  PubMed  Google Scholar 

  4. Poojari R, Sawant AV, Kini S, Srivastava R, Panda D. Antihepatoma activity of multifunctional polymeric nanoparticles via inhibition of microtubules and tyrosine kinases. Nanomedicine (London). 2020;15(4):381–96. https://doi.org/10.2217/nnm-2019-0349.

    Article  CAS  Google Scholar 

  5. Badekila AK, Kini S, Jaiswal AK. Fabrication techniques of biomimetic scaffolds in three-dimensional cell culture: a review. J Cell Physiol. 2020;236:1–22. https://doi.org/10.1002/jcp.29935.

    Article  CAS  Google Scholar 

  6. Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv. 2020;18:1–23. https://doi.org/10.1080/17425247.2021.1828339.

    Article  CAS  Google Scholar 

  7. Jin K-T, Lu Z-B, Chen J-Y, Liu Y-Y, Lan H-R, Dong H-Y, et al. Recent trends in nanocarrier-based targeted chemotherapy: selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. J Nanomater. 2020;2020:1–14.

    Article  Google Scholar 

  8. •• Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017, 6(1):44. https://doi.org/10.1186/s40169-017-0175-0This review provides insight on different types of nanoformulations and their applications.

  9. •• Barenholz YC. Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34 This is a comprehensive review on Doxil®, first nanoformulation approved for cancer therapy.

    Article  CAS  Google Scholar 

  10. •• Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomedicine. 2009;4:99 This is a comprehensive review on Abraxane, one of the first nanoformulation approved for cancer therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Buabeid MA, Arafa EA, Murtaza G. Emerging prospects for nanoparticle-enabled cancer immunotherapy. J Immunol Res. 2020;2020:9624532–11. https://doi.org/10.1155/2020/9624532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhardwaj V, Kaushik A, Khatib ZM, Nair M, McGoron AJ. Recalcitrant issues and new frontiers in nano-pharmacology. Front Pharmacol. 2019;10:1369. https://doi.org/10.3389/fphar.2019.01369.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed Nov 18 2020.

  14. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  Google Scholar 

  15. Rebbeck TR. Prostate cancer genetics: variation by race, ethnicity, and geography. Semin Radiat Oncol. 2017;27(1):3–10. https://doi.org/10.1016/j.semradonc.2016.08.002.

    Article  PubMed  Google Scholar 

  16. Hjelmborg JB, Scheike T, Holst K, Skytthe A, Penney KL, Graff RE, et al. The heritability of prostate cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol Biomark Prev. 2014;23(11):2303–10. https://doi.org/10.1158/1055-9965.EPI-13-0568.

    Article  Google Scholar 

  17. McClure TBS, Sandhu JS, Schlegel PN, Colt JJ. Prostate cancer. In: Encyclopedia of Endocrine Diseases Elsevier. 2018.

  18. •• Bagalkot V, Zhang L, Levy-Nissenbaum E, Jon S, Kantoff PW, Langer R, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007;7(10):3065–70. https://doi.org/10.1021/nl071546nThis article reports the application of QD-aptamer-doxorubicin conjugate designed specifically to target PSMA with bioimaging, biosensing and therapeutic application.

    Article  CAS  PubMed  Google Scholar 

  19. Lee JY, Kim JS, Cho HJ, Kim DD. Poly(styrene)-b-poly(DL-lactide) copolymer-based nanoparticles for anticancer drug delivery. Int J Nanomedicine. 2014;9:2803–13. https://doi.org/10.2147/IJN.S62806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pilot study of AuroLase(tm) therapy in refractory and/or recurrent tumors of the head and neck - full text view - ClinicalTrials.govhttps://clinicaltrials.gov/ct2/show/NCT00848042. Accessed Nov 18 2020.

  21. A phase I safety study of a cancer vaccine to treat HLA-A2 positive advanced stage ovarian, breast and prostate cancer - full text view - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/study/NCT01095848. Accessed Nov 18 2020.

  22. A study evaluating MM-310 in patients with solid tumors - full text view - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03076372. Accessed Nov 18 2020.

  23. • Rastinehad AR, Anastos H, Wajswol E, Winoker JS, Sfakianos JP, Doppalapudi SK, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci U S A. 2019;116(37):18590–6. https://doi.org/10.1073/pnas.1906929116This paper explores application of gold nanoparticles photothermal cancer therapy specifically treating the prostate cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nanospectra biosciences announces four additional prestigious trial sites for pivotal AuroLase study https://www.prnewswire.com/news-releases/nanospectra-biosciences-announces-four-additional-prestigious-trial-sites-for-pivotal-aurolase-study-301105402.html. Accessed Nov 18 2020.

  25. Trial of NanoPac® focal therapy in subjects with prostate cancer - full text view - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/study/NCT03077659. Accessed Nov 2018 2020.

  26. Vicente-Ruiz S, Serrano-Martí A, Armiñán A, Vicent MJ. Nanomedicine for the treatment of advanced prostate cancer. Advanced Therapeutics. 2020;2000136.

  27. Karkada M, Quinton T, Blackman R, Mansour M. Tumor inhibition by DepoVax-based cancer vaccine is accompanied by reduced regulatory/suppressor cell proliferation and tumor infiltration. ISRN Oncol. 2013;2013.

  28. Hrytsenko O, Weir GM, Stanford MM. Combination of a DepoVax™ peptide vaccine with a lentivector vaccine induces strong antigen-specific immune responses and provides effective tumor control in murine models. Am Assoc Immnol; 2018.

    Google Scholar 

  29. Siegel R, Miller K. Jemal A (2020) cancer statistics. CA Cancer J Clin. 2020;70(1):7–30.

    Article  Google Scholar 

  30. •• Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL, et al. Lung cancer: current therapies and new targeted treatments. Lancet. 2017;389(10066):299–311. https://doi.org/10.1016/S0140-6736(16)30958-8.It is a comprehensive review discusses conventional as well as novel targeted therapies for lung cancer treatment.

    Article  CAS  PubMed  Google Scholar 

  31. Basumallik N, Agarwal M. Small cell lung cancer. Treasure Island (FL): StatPearls; 2020.

    Google Scholar 

  32. Azarmi S, Roa WH, Lobenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev. 2008;60(8):863–75. https://doi.org/10.1016/j.addr.2007.11.006.

    Article  CAS  PubMed  Google Scholar 

  33. Lu C, Stewart DJ, Lee JJ, Ji L, Ramesh R, Jayachandran G, et al. Phase I clinical trial of systemically administered TUSC2(FUS1)-nanoparticles mediating functional gene transfer in humans. PLoS One. 2012;7(4):e34833. https://doi.org/10.1371/journal.pone.0034833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Reid G, Pel ME, Kirschner MB, Cheng YY, Mugridge N, Weiss J, et al. Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann Oncol. 2013;24(12):3128–35. https://doi.org/10.1093/annonc/mdt412.

    Article  CAS  PubMed  Google Scholar 

  35. •• van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017;18(10):1386–96. https://doi.org/10.1016/S1470-2045(17)30621-6A phase I clinical trial evaluted the safety dosage, activity and associated side-effects of a novel nanomedicine derived from microRNA loaded minicells for treating pleural mesothelioma.

    Article  PubMed  Google Scholar 

  36. Yurkovetskiy AV, Hiller A, Syed S, Yin M, Lu XM, Fischman AJ, et al. Synthesis of a macromolecular camptothecin conjugate with dual phase drug release. Mol Pharm. 2004;1(5):375–82. https://doi.org/10.1021/mp0499306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. MacKenzie M, Hirte H, Siu L, Gelmon K, Ptaszynski M, Fisher B, et al. A phase I study of OSI-211 and cisplatin as intravenous infusions given on days 1, 2 and 3 every 3 weeks in patients with solid cancers. Ann Oncol. 2004;15(4):665–70.

    Article  CAS  Google Scholar 

  38. Safety and pharmacokinetics of escalating doses of DNIB0600A in participants with non-small cell lung cancer (NSCLC) and platinum resistant ovarian cancer - full text view - ClinicalTrials.gov. https://ClinicalTrials.gov/show/NCT01363947. Accessed Nov 18 2020.

  39. Chen H, Dy G, Groman A, Farrell E, Miller A, Bushunow P, et al. MA 01.06 A phase II study of etirinotecan pegol (NKTR-102) in patients with chemotherapy-resistant small cell lung cancer. J Thorac Oncol. 2017;12(11):S1800–S1.

    Article  Google Scholar 

  40. •• Von Hoff DD, Mita MM, Ramanathan RK, Weiss GJ, Mita AC, LoRusso PM, et al. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin Cancer Res. 2016;22(13):3157–63. https://doi.org/10.1158/1078-0432.CCR-15-2548This study describes the safety aspects of nanoparticle-drug conjugate BIND-014 containing docetaxel used for treating advanced solid tumors.

  41. Keefe SM, Hoffman-Censits J, Cohen RB, Mamtani R, Heitjan D, Eliasof S, et al. Efficacy of the nanoparticle-drug conjugate CRLX101 in combination with bevacizumab in metastatic renal cell carcinoma: results of an investigator-initiated phase I-IIa clinical trial. Ann Oncol. 2016;27(8):1579–85. https://doi.org/10.1093/annonc/mdw188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. • Subbiah V, Grilley-Olson JE, Combest AJ, Sharma N, Tran RH, Bobe I, et al. Phase Ib/II trial of NC-6004 (nanoparticle cisplatin) plus gemcitabine in patients with advanced solid tumors. Clin Cancer Res. 2018;24(1):43–51. https://doi.org/10.1158/1078-0432.CCR-17-1114A cohort phase Ib/II study showed a well tolerability against cisplatin nanoformulation in combination with gemcitabine in advanced solid tumors with no clinical neuro,oto and nephrotoxicity.

    Article  CAS  PubMed  Google Scholar 

  43. Numico G, Castiglione F, Granetto C, Garrone O, Mariani G, Di Costanzo G, et al. Single-agent pegylated liposomal doxorubicin (Caelix®) in chemotherapy pretreated non-small cell lung cancer patients: a pilot trial. Lung Cancer. 2002;35(1):59–64.

    Article  Google Scholar 

  44. Study of irinotecan liposome injection (ONIVYDE®) in patients with small cell lung cancer (RESILIENT) - full text view - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03088813. Accessed Nov 18 2020.

  45. A trial of paclitaxel (Genexol®) and cisplatin versus paclitaxel loaded polymeric micelle (Genexol-PM®) and cisplatin in advanced non small cell lung cancer full text view - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT01023347. Accessed Nov 18 2020.

  46. Kim TY, Kim DW, Chung JY, Shin SG, Kim SC, Heo DS, et al. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin Cancer Res. 2004;10(11):3708–16. https://doi.org/10.1158/1078-0432.CCR-03-0655.

    Article  CAS  PubMed  Google Scholar 

  47. Green M, Manikhas G, Orlov S, Afanasyev B, Makhson A, Bhar P, et al. Abraxane®, a novel Cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006;17(8):1263–8.

    Article  CAS  Google Scholar 

  48. Chen H, Dy G, Groman A, Brady W, Jamshed S, Bushunow P, et al. P1. 07-001 A phase II study of etirinotecan pegol (NKTR-102), a topoisomerase-I inhibitor polymer conjugate, in small cell lung cancer: topic: drug treatment alone and in combination with radiotherapy. J Thorac Oncol. 2017;12(1):S695–S6.

    Article  Google Scholar 

  49. Socinski MA, Kaye FJ, Spigel DR, Kudrik FJ, Ponce S, Ellis PM, et al. Phase 1/2 Study of the CD56-targeting antibody-drug conjugate lorvotuzumab mertansine (IMGN901) in combination with carboplatin/etoposide in small-cell lung cancer patients with extensive-stage disease. Clin Lung Cancer. 2017;18(1):68–76 e2. https://doi.org/10.1016/j.cllc.2016.09.002.

    Article  CAS  PubMed  Google Scholar 

  50. •• Yasuda Y, Hattori Y, Tohnai R, Ito S, Kawa Y, Kono Y, et al. The safety and efficacy of carboplatin plus nanoparticle albumin-bound paclitaxel in the treatment of non-small cell lung cancer patients with interstitial lung disease. Jpn J Clin Oncol. 2018;48(1):89–93. https://doi.org/10.1093/jjco/hyx142A retrospective study involving advanced non-small cell lung cancer patients for combinatorial therapy of carboplatin plus nab-paclitaxel showed favorable therapeutic efficacy.

    Article  PubMed  Google Scholar 

  51. •• Ahn HK, Jung M, Sym SJ, Shin DB, Kang SM, Kyung SY, et al. A phase II trial of cremorphor EL-free paclitaxel (genexol-PM) and gemcitabine in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol. 2014;74(2):277–82. https://doi.org/10.1007/s00280-014-2498-5A cremophor EL free polymeric micelle encapsulating paclitaxel and gemcitabine in combinatorial therapy against advanced non-small cell lung cancer showed less hypersensitivity in patients.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim YD, Park TE, Singh B, Maharjan S, Choi YJ, Choung PH, et al. Nanoparticle-mediated delivery of siRNA for effective lung cancer therapy. Nanomedicine (London). 2015;10(7):1165–88. https://doi.org/10.2217/nnm.14.214.

    Article  CAS  Google Scholar 

  53. Fujita Y, Kuwano K, Ochiya T. Development of small RNA delivery systems for lung cancer therapy. Int J Mol Sci. 2015;16(3):5254–70. https://doi.org/10.3390/ijms16035254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Twyman-Saint Victor C, Rech AJ, Maity A, Rengan R, Pauken KE, Stelekati E, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520(7547):373–7. https://doi.org/10.1038/nature14292.

    Article  CAS  PubMed  Google Scholar 

  55. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–14. https://doi.org/10.1016/j.cell.2015.03.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90. https://doi.org/10.3322/caac.20107.

    Article  Google Scholar 

  57. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007;57(1):43–66. https://doi.org/10.3322/canjclin.57.1.43.

    Article  PubMed  Google Scholar 

  58. Boyle P, Levin B. World cancer report 2008. International Agency for Research on Cancer: IARC Press; 2008.

    Google Scholar 

  59. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006;3(11):e442. https://doi.org/10.1371/journal.pmed.0030442.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kreimer AR, Clifford GM, Boyle P, Franceschi S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomark Prev. 2005;14(2):467–75. https://doi.org/10.1158/1055-9965.EPI-04-0551.

    Article  CAS  Google Scholar 

  61. Pignon JP, le Maitre A, Maillard E, Bourhis J, Group M-NC. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol. 2009;92(1):4–14. https://doi.org/10.1016/j.radonc.2009.04.014.

    Article  PubMed  Google Scholar 

  62. Organization WH. Review of cancer medicines on the WHO list of essential medicines. Geneva, Switzerland. World Health Organization. 2014:1–8.

  63. Zhu Y, Wen LM, Li R, Dong W, Jia SY, Qi MC. Recent advances of nano-drug delivery system in oral squamous cell carcinoma treatment. Eur Rev Med Pharmacol Sci. 2019;23(21):9445–53. https://doi.org/10.26355/eurrev_201911_19438.

    Article  CAS  PubMed  Google Scholar 

  64. Adkins D, Ley J, Trinkaus K, Thorstad W, Lewis J Jr, Wildes T, et al. A phase 2 trial of induction nab-paclitaxel and cetuximab given with cisplatin and 5-fluorouracil followed by concurrent cisplatin and radiation for locally advanced squamous cell carcinoma of the head and neck. Cancer. 2013;119(4):766–73. https://doi.org/10.1002/cncr.27741.

    Article  CAS  PubMed  Google Scholar 

  65. Adkins D, Ley J, Michel L, Wildes TM, Thorstad W, Gay HA, et al. nab-Paclitaxel, cisplatin, and 5-fluorouracil followed by concurrent cisplatin and radiation for head and neck squamous cell carcinoma. Oral Oncol. 2016;61:1–7. https://doi.org/10.1016/j.oraloncology.2016.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. • Adkins D, Ley J, Oppelt P, Wildes TM, Gay HA, Daly M, et al. nab-paclitaxel-based induction chemotherapy with or without cetuximab for locally advanced head and neck squamous cell carcinoma. Oral Oncol. 2017;72:26–31 This study is a part of series that evaluated nab-paclitael as an induction chemotherapeutic agent for the treatment of Head and neck cancer demonstrating favorable overal survival rates.

    Article  CAS  Google Scholar 

  67. •• Seiwert T, Foster C, Blair E, Karrison T, Agrawal N, Melotek J, et al. OPTIMA: a phase II dose and volume de-escalation trial for human papillomavirus-positive oropharyngeal cancer. Ann Oncol. 2019;30(2):297–302 This is a volume de-escalation study involving the combination of chemotherapy and radiotherapy for the treatment of HPV positive oropharyngeal carcinomas.

    Article  CAS  Google Scholar 

  68. Nab-paclitaxel, cisplatin, and cetuximab with concurrent radiation therapy for locally advanced head and neck cancer - full text view - ClinicalTrials.gov. https://ClinicalTrials.gov/show/NCT00851877. Accessed Nov 18 2020.

  69. Loong H, Winquist E, Waldron J, Chen E, Kim J, Palma D, et al. Phase 1 study of nab-paclitaxel, cisplatin and 5-fluorouracil as induction chemotherapy followed by concurrent chemoradiotherapy in locoregionally advanced squamous cell carcinoma of the oropharynx. Eur J Cancer. 2014;50(13):2263–70.

    Article  CAS  Google Scholar 

  70. Health NIo. National Cancer Institute. Common terminology criteria for adverse events, version 3.0.

  71. Nab-paclitaxel, cetuximab, cisplatin, and radiation therapy in treating patients with recurrent head and neck cancer - full text view - ClincalTrials.gov. https://ClinicalTrials.gov/show/NCT00833261. Accessed Nov 18 2020.

  72. Li J, Kim SG, Blenis J. Rapamycin: one drug, many effects. Cell Metab. 2014;19(3):373–9. https://doi.org/10.1016/j.cmet.2014.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gonzalez-Angulo AM, Meric-Bernstam F, Chawla S, Falchook G, Hong D, Akcakanat A, et al. Weekly nab-rapamycin in patients with advanced nonhematologic malignancies: final results of a phase I trial. Clin Cancer Res. 2013;19(19):5474–84. https://doi.org/10.1158/1078-0432.CCR-12-3110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Duffaud F, Borner M, Chollet P, Vermorken JB, Bloch J, Degardin M, et al. Phase II study of OSI-211 (liposomal lurtotecan) in patients with metastatic or loco-regional recurrent squamous cell carcinoma of the head and neck. An EORTC New Drug Development Group study. Eur J Cancer. 2004;40(18):2748–52. https://doi.org/10.1016/j.ejca.2004.08.024.

    Article  CAS  PubMed  Google Scholar 

  75. Bonvalot S, Rutkowski PL, Thariat J, Carrere S, Ducassou A, Sunyach MP, et al. NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): a multicentre, phase 2-3, randomised, controlled trial. Lancet Oncol. 2019;20(8):1148–59. https://doi.org/10.1016/S1470-2045(19)30326-2.

    Article  CAS  PubMed  Google Scholar 

  76. •• NBTXR3 crystalline nanoparticles and radiation therapy in treating patients with locally advanced squamous cell carcinoma of the oral cavity or oropharynx - full text view - ClinicalTrials.gov. https://ClinicalTrials.gov/show/NCT01946867. Accessed Nov 18 2020. This study evaluates effectiveness of intratumoral device containing a radioenhancer hafnium oxide nanoparticle to induce radiobiological effect.

  77. Induction chemotherapy for locally advanced squamous cell carcinoma of the head and neck - full text view - ClinicalTrials.gov. https://ClinicalTrials.gov/show/NCT01412229. Accessed Nov 18 2020.

  78. Cisplatin, nab-paclitaxel, and cetuximab (CACTUX) in patients with incurable head and neck squamous cell carcinoma - full text view - ClinicalTrials.gov. https://ClinicalTrials.gov/show/NCT02270814. Accessed Nov 18 2020.

  79. Nab-paclitaxel and cisplatin or nab-paclitaxel as induction therapy for locally advanced squamous cell carcinoma of the head and neck (HNSCC) - full text view - ClinicalTrials.gov. https://ClinicalTrials.gov/show/NCT02573493. Accessed Nov 18 2020.

  80. A study of BIND-014 given to patients with advanced or metastatic cancer - full text view - ClinicalTrials.gov. https://ClinicalTrials.gov/show/NCT01300533. Accessed Nov 18 2020.

  81. Doxil topotecan doublet cancer study - full text view - ClinicalTrials.gov. https://ClinicalTrials.gov/show/NCT00252889. Accessed Nov 18 2020.

  82. Nanoliposomal irinotecan in head & neck and esophagus after prior platinum-based chemotherapy or chemoradiotherapy - Full Text View - ClinicalTrials.gov. https://ClinicalTrials.gov/show/NCT03712397. Accessed Nov 18 2020.

  83. Nanoparticle albumin-bound rapamycin in treating patients with advanced cancer with mTOR mutations - full text view - ClinicalTrials.gov. https://ClinicalTrials.gov/show/NCT02646319. Accessed Nov 18 2020.

  84. Liposomal doxorubicin for liver cancer. Rho Chi Post. https://rhochistj.org/RhoChiPost/liposomal-doxorubicin-for-liver-cancer/. Accessed Nov 18 2020.

  85. Goldberg SN, Kamel IR, Kruskal JB, Reynolds K, Monsky WL, Stuart KE, et al. Radiofrequency ablation of hepatic tumors: increased tumor destruction with adjuvant liposomal doxorubicin therapy. AJR Am J Roentgenol. 2002;179(1):93–101. https://doi.org/10.2214/ajr.179.1.1790093.

    Article  PubMed  Google Scholar 

  86. • Study of ThermoDox with standardized radiofrequency ablation (RFA) for treatment of hepatocellular carcinoma (HCC) - full text view - ClinicalTrials.gov. https://ClinicalTrials.gov/show/NCT02112656. Accessed Nov 18 2020. This is the study showing the effect of thermosensitive liposomal doxorubicin formulation plus radioablation to treat heptocellular carcinoma.

  87. Zhou Q, Sun X, Zeng L, Liu J, Zhang Z. A randomized multicenter phase II clinical trial of mitoxantrone-loaded nanoparticles in the treatment of 108 patients with unresected hepatocellular carcinoma. Nanomedicine. 2009;5(4):419–23. https://doi.org/10.1016/j.nano.2009.01.009.

    Article  CAS  PubMed  Google Scholar 

  88. Ruman U, Fakurazi S, Masarudin MJ, Hussein MZ. Nanocarrier-based therapeutics and theranostics drug delivery systems for next generation of liver cancer nanodrug modalities. Int J Nanomedicine. 2020;15:1437–56. https://doi.org/10.2147/IJN.S236927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Safety, pharmacokinetics and preliminary anti-tumor activity of intravenous TKM-080301 in subjects with advanced hepatocellular carcinoma - full text view - ClinicalTrials.gov. https://ClinicalTrials.gov/show/NCT02191878. Accessed Nov 18 2020.

  90. Baboci L, Capolla S, Di Cintio F, Colombo F, Mauro P, Dal Bo M, et al. The dual role of the liver in nanomedicine as an actor in the elimination of nanostructures or a therapeutic target. J Oncol. 2020;2020:1–15.

    Article  Google Scholar 

  91. First-in-human safety and tolerability study of MTL-CEBPA in patients with advanced liver cancer - full text view - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02716012. Accessed Nov 18 2020.

  92. Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020;122(11):1630–7. https://doi.org/10.1038/s41416-020-0802-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6(1):12–21. https://doi.org/10.1002/smll.200901158.

    Article  CAS  PubMed  Google Scholar 

  94. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Eng. 2014;53(46):12320–64. https://doi.org/10.1002/anie.201403036.

    Article  CAS  Google Scholar 

  95. Yue J, Feliciano TJ, Li W, Lee A, Odom TW. Gold nanoparticle size and shape effects on cellular uptake and intracellular distribution of siRNA nanoconstructs. Bioconjug Chem. 2017;28(6):1791–800. https://doi.org/10.1021/acs.bioconjchem.7b00252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ruozi B, Belletti D, Sharma HS, Sharma A, Muresanu DF, Mossler H, et al. PLGA Nanoparticles loaded cerebrolysin: studies on their preparation and investigation of the effect of storage and serum stability with reference to traumatic brain injury. Mol Neurobiol. 2015;52(2):899–912. https://doi.org/10.1007/s12035-015-9235-x.

    Article  CAS  PubMed  Google Scholar 

  97. Ma S, Zhou J, Zhang Y, He Y, Jiang Q, Yue D, et al. Highly stable fluorinated nanocarriers with iRGD for overcoming the stability dilemma and enhancing tumor penetration in an orthotopic breast cancer. ACS Appl Mater Interfaces. 2016;8(42):28468–79. https://doi.org/10.1021/acsami.6b09633.

    Article  CAS  PubMed  Google Scholar 

  98. Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci U S A. 2011;108(6):2426–31. https://doi.org/10.1073/pnas.1018382108.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kini S, Badekila AK, Barh D, Sharma A. Cellular and organismal toxicity of nanoparticles and its associated health concerns. In: Saxena SK, Khurana SMP, editors. NanoBioMedicine. Singapore: Springer Singapore; 2020. p. 477–97.

    Chapter  Google Scholar 

  100. • Dobrovolskaia MA, Neun BW, Clogston JD, Grossman JH, McNeil SE. Choice of method for endotoxin detection depends on nanoformulation. Nanomedicine (Lond). 2014;9(12):1847–56. https://doi.org/10.2217/nnm.13.157A study showing the interference of nanoparticles in endotoxin detection.

    Article  CAS  Google Scholar 

  101. Hare JI, Lammers T, Ashford MB, Puri S, Storm G, Barry ST. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv Drug Deliv Rev. 2017;108:25–38. https://doi.org/10.1016/j.addr.2016.04.025.

    Article  CAS  PubMed  Google Scholar 

  102. Rachael Crist SM. Nanotechnology for treating cancer: pitfalls and bridges on the path to nanomedicines.2015. https://www.cancer.gov/research/key-initiatives/ras/rascentral/blog/2015/nanomedicines. Accessed Nov 2018 2020.

  103. •• Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA, Adiseshaiah PP, et al. Common pitfalls in nanotechnology: lessons learned from NCI's nanotechnology characterization laboratory. Integr Biol (Camb). 2013;5(1):66–73. https://doi.org/10.1039/c2ib20117hA comprehensive review showing the disadvantages of nanotechnology.

    Article  CAS  Google Scholar 

  104. •• Sanhai W, Sakamoto J, Canady R, Ferrari M. Seven challenges for nanomedicine. Nat Nanotechnol. 2008;3(5):242–4. https://doi.org/10.1038/nnano.2008.114A commentry focussed on challenges of nanomedicince in clinical sector.

    Article  CAS  PubMed  Google Scholar 

  105. Mahato M, Patra S, Gogoi M. Herbal Nanocarriers for cancer therapy. In: Yata VK, Ranjan S, Dasgupta N, Lichtfouse E, editors. Nanopharmaceuticals: Principles and Applications Vol 2: Springer Nature; 2021. P. 41 – 75.

Download references

Funding

S.K acknowledges Nitte (Deemed to be University) (NU/DR/NUFR2/NUCSER/2019-20/04) and DST-SERB, Govt. of India (ECR/2018/002345) for the financial support. N.S and A.K.B is thankful to Nitte (Deemed to be University) for the Ph.D fellowship. Authors are thankful to the Director, NUCSER, for the valuable guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudarshan Kini.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nanoparticle-based Drug Delivery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, P.P., S., N., Narayanan, A. et al. Nanomedicine in Cancer Clinics: Are We There Yet?. Curr Pathobiol Rep 9, 43–55 (2021). https://doi.org/10.1007/s40139-021-00220-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-021-00220-6

Keywords

Navigation