Skip to main content

Advertisement

Log in

ER Stress and Autophagy in Obesity and Nonalcoholic Fatty Liver Disease

  • Autophagy in Pathobiology (W-X Ding and H-M Shen, Section Editors)
  • Published:
Current Pathobiology Reports

Abstract

Purpose of review

This review highlights the extent to which dysfunction of the endoplasmic reticulum (ER) and autophagy contribute to the pathogenesis of obesity-associated hepatic steatosis and non-alcoholic fatty liver disease (NAFLD). We addressed the following questions: what is the role of the unfolded protein response (UPR) and autophagy in the liver? What interactions between the UPR and autophagy are present during the progression of obesity-associated NAFLD? What steps within the pathways of the UPR and autophagy could be potential therapeutic targets for the treatment of NAFLD?

Recent Findings

Recent studies indicate that dysfunction in the UPR and autophagy play important roles in the development of NAFLD and its progression to NASH.

Summary

This review critically evaluates the literature investigating the role of the UPR and autophagy in the progression of NAFLD and highlights potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. JAMA. 2012;307(5):491–7. doi:10.1001/jama.2012.39.

    Article  PubMed  Google Scholar 

  2. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55(6):2005–23. doi:10.1002/hep.25762.

    Article  PubMed  Google Scholar 

  3. Loomba R, Sanyal AJ. The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol. 2013;10(11):686–90. doi:10.1038/nrgastro.2013.171.

    Article  CAS  PubMed  Google Scholar 

  4. Yki-Jarvinen H. Non-alcoholic fatty liver disease as a cause and a consequence of metabolic syndrome. Lancet Diabetes Endocrinol. 2014;2(11):901–10. doi:10.1016/S2213-8587(14)70032-4.

    Article  CAS  PubMed  Google Scholar 

  5. Loomba R, Abraham M, Unalp A, Wilson L, Lavine J, Doo E, et al. Association between diabetes, family history of diabetes, and risk of nonalcoholic steatohepatitis and fibrosis. Hepatology. 2012;56(3):943–51. doi:10.1002/hep.25772.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, Contreras M, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011;140(1):124–31. doi:10.1053/j.gastro.2010.09.038.

    Article  PubMed  Google Scholar 

  7. Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology. 2014;59(2):713–23. doi:10.1002/hep.26672.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Haas JT, Francque S, Staels B. Pathophysiology and mechanisms of nonalcoholic fatty liver disease. Annu Rev Physiol. 2016;78:181–205. doi:10.1146/annurev-physiol-021115-105331.

    Article  CAS  PubMed  Google Scholar 

  9. Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology. 2010;52(5):1836–46. doi:10.1002/hep.24001.

    Article  CAS  PubMed  Google Scholar 

  10. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85. doi:10.1038/nature10809.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wei Y, Rector RS, Thyfault JP, Ibdah JA. Nonalcoholic fatty liver disease and mitochondrial dysfunction. World J Gastroenterol: WJG. 2008;14(2):193–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116(6):1413–9.

    Article  CAS  PubMed  Google Scholar 

  13. Musso G, Cassader M, Rosina F, Gambino R. Impact of current treatments on liver disease, glucose metabolism and cardiovascular risk in non-alcoholic fatty liver disease (NAFLD): a systematic review and meta-analysis of randomised trials. Diabetologia. 2012;55(4):885–904. doi:10.1007/s00125-011-2446-4.

    Article  CAS  PubMed  Google Scholar 

  14. Zezos P, Renner EL. Liver transplantation and non-alcoholic fatty liver disease. World J Gastroenterol: WJG. 2014;20(42):15532–8. doi:10.3748/wjg.v20.i42.15532.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kuntz E, Kuntz H-D. Hepatology: principles and practice : history, morphology, biochemistry, diagnostics, clinic, therapy. Berlin: Springer; 2002.

    Google Scholar 

  16. Fu S, Watkins SM, Hotamisligil GS. The role of endoplasmic reticulum in hepatic lipid homeostasis and stress signaling. Cell Metab. 2012;15(5):623–34. doi:10.1016/j.cmet.2012.03.007.

    Article  CAS  PubMed  Google Scholar 

  17. Wang S, Kaufman RJ. How does protein misfolding in the endoplasmic reticulum affect lipid metabolism in the liver? Curr Opin Lipidol. 2014;25(2):125–32. doi:10.1097/MOL.0000000000000056.

    Article  CAS  PubMed  Google Scholar 

  18. van Schaftingen E, Gerin I. The glucose-6-phosphatase system. Biochem J. 2002;362(Pt 3):513–32.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lee MW, Chanda D, Yang J, Oh H, Kim SS, Yoon YS, et al. Regulation of hepatic gluconeogenesis by an ER-bound transcription factor. CREBH Cell Metab. 2010;11(4):331–9. doi:10.1016/j.cmet.2010.02.016.

    Article  CAS  PubMed  Google Scholar 

  20. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999;13(10):1211–33.

    Article  CAS  PubMed  Google Scholar 

  21. Wu J, Kaufman RJ. From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ. 2006;13(3):374–84. doi:10.1038/sj.cdd.4401840.

    Article  CAS  PubMed  Google Scholar 

  22. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519–29. doi:10.1038/nrm2199.

    Article  CAS  PubMed  Google Scholar 

  23. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115(10):2656–64. doi:10.1172/JCI26373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. • Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306(5695):457–61. doi:10.1126/science.1103160. This study revealed that ER stress contributes to obesity-associated insulin resistence.

    Article  PubMed  CAS  Google Scholar 

  25. Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka TA, et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem. 2005;280(1):847–51. doi:10.1074/jbc.M411860200.

    Article  CAS  PubMed  Google Scholar 

  26. • Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73. doi:10.1016/j.cell.2008.07.043. This article was one of the first to demonstrate that inflammation is an upstream factor for ER stress.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boden G, Duan X, Homko C, Molina EJ, Song W, Perez O, et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes. 2008;57(9):2438–44. doi:10.2337/db08-0604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, Hotamisligil GS, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes. 2009;58(3):693–700. doi:10.2337/db08-1220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313(5790):1137–40. doi:10.1126/science.1128294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kars M, Yang L, Gregor MF, Mohammed BS, Pietka TA, Finck BN, et al. Tauroursodeoxycholic acid may improve liver and muscle but not adipose tissue insulin sensitivity in obese men and women. Diabetes. 2010;59(8):1899–905. doi:10.2337/db10-0308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Su Q, Tsai J, Xu E, Qiu W, Bereczki E, Santha M, et al. Apolipoprotein B100 acts as a molecular link between lipid-induced endoplasmic reticulum stress and hepatic insulin resistance. Hepatology. 2009;50(1):77–84. doi:10.1002/hep.22960.

    Article  CAS  PubMed  Google Scholar 

  32. • Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 2011;473(7348):528–31. doi:10.1038/nature09968. This study provided the first direct evidence that aberrent lipid heomostasis is one of the physiological causes for ER stress in obesity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Volmer R, van der Ploeg K, Ron D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc Natl Acad Sci U S A. 2013;110(12):4628–33. doi:10.1073/pnas.1217611110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hollien, J., et al. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol. 2009;186(3): 323–31.

  35. Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science. 2008;320(5882):1492–6. doi:10.1126/science.1158042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang S, Chen Z, Lam V, Han J, Hassler J, Finck BN, et al. IRE1alpha-XBP1s induces PDI expression to increase MTP activity for hepatic VLDL assembly and lipid homeostasis. Cell Metab. 2012;16(4):473–86. doi:10.1016/j.cmet.2012.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. So JS, Hur KY, Tarrio M, Ruda V, Frank-Kamenetsky M, Fitzgerald K, et al. Silencing of lipid metabolism genes through IRE1alpha-mediated mRNA decay lowers plasma lipids in mice. Cell Metab. 2012;16(4):487–99. doi:10.1016/j.cmet.2012.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zeng L, Lu M, Mori K, Luo S, Lee AS, Zhu Y, et al. ATF6 modulates SREBP2-mediated lipogenesis. EMBO J. 2004;23(4):950–8. doi:10.1038/sj.emboj.7600106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. • Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, et al. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell. 2006;124(3):587–99. doi:10.1016/j.cell.2005.11.040. This study demonstrates the important role of CREBH in lipid metabolism and inflammation in response to ER stress.

    Article  CAS  PubMed  Google Scholar 

  40. Howarth DL, Lindtner C, Vacaru AM, Sachidanandam R, Tsedensodnom O, Vasilkova T, et al. Activating transcription factor 6 is necessary and sufficient for alcoholic fatty liver disease in zebrafish. PLoS Genet. 2014;10(5):e1004335. doi:10.1371/journal.pgen.1004335.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397(6716):271–4. doi:10.1038/16729.

    Article  CAS  PubMed  Google Scholar 

  42. Xiao G, Zhang T, Yu S, Lee S, Calabuig-Navarro V, Yamauchi J, et al. ATF4 protein deficiency protects against high fructose-induced hypertriglyceridemia in mice. J Biol Chem. 2013;288(35):25350–61. doi:10.1074/jbc.M113.470526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chikka MR, McCabe DD, Tyra HM, Rutkowski DT. C/EBP homologous protein (CHOP) contributes to suppression of metabolic genes during endoplasmic reticulum stress in the liver. J Biol Chem. 2013;288(6):4405–15. doi:10.1074/jbc.M112.432344.

    Article  CAS  PubMed  Google Scholar 

  44. Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol. 2008;9(12):944–57. doi:10.1038/nrm2546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jurczak MJ, Lee AH, Jornayvaz FR, Lee HY, Birkenfeld AL, Guigni BA, et al. Dissociation of inositol-requiring enzyme (IRE1alpha)-mediated c-Jun N-terminal kinase activation from hepatic insulin resistance in conditional X-box-binding protein-1 (XBP1) knock-out mice. J Biol Chem. 2012;287(4):2558–67. doi:10.1074/jbc.M111.316760.

    Article  CAS  PubMed  Google Scholar 

  46. Phillips MJ, Voeltz GK. Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol. 2016;17(2):69–82. doi:10.1038/nrm.2015.8.

    Article  CAS  PubMed  Google Scholar 

  47. Hayashi T, Su TP. Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell. 2007;131(3):596–610. doi:10.1016/j.cell.2007.08.036.

    Article  CAS  PubMed  Google Scholar 

  48. Verfaillie T, Rubio N, Garg AD, Bultynck G, Rizzuto R, Decuypere JP, et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 2012;19(11):1880–91. doi:10.1038/cdd.2012.74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bravo R, Vicencio JM, Parra V, Troncoso R, Munoz JP, Bui M, et al. Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci. 2011;124(Pt 13):2143–52. doi:10.1242/jcs.080762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arruda AP, Pers BM, Parlakgul G, Guney E, Inouye K, Hotamisligil GS. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med. 2014;20(12):1427–35. doi:10.1038/nm.3735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Haynes CM, Ron D. The mitochondrial UPR—protecting organelle protein homeostasis. J Cell Sci. 2010;123(Pt 22):3849–55. doi:10.1242/jcs.075119.

    Article  CAS  PubMed  Google Scholar 

  52. Fujita H, Yagishita N, Aratani S, Saito-Fujita T, Morota S, Yamano Y, et al. The E3 ligase synoviolin controls body weight and mitochondrial biogenesis through negative regulation of PGC-1beta. EMBO J. 2015;34(8):1042–55. doi:10.15252/embj.201489897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell. 2010;140(6):900–17. doi:10.1016/j.cell.2010.02.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287(5453):664–6.

    Article  CAS  PubMed  Google Scholar 

  55. Dela Pena A, Leclercq I, Field J, George J, Jones B, Farrell G. NF-kappaB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroenterology. 2005;129(5):1663–74. doi:10.1053/j.gastro.2005.09.004.

    Article  CAS  PubMed  Google Scholar 

  56. Cullinan SB, Zhang D, Hannink M, Arvisais E, Kaufman RJ, Diehl JA. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 2003;23(20):7198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gupte AA, Lyon CJ, Hsueh WA. Nuclear factor (erythroid-derived 2)-like-2 factor (Nrf2), a key regulator of the antioxidant response to protect against atherosclerosis and nonalcoholic steatohepatitis. Curr Diab Rep. 2013;13(3):362–71. doi:10.1007/s11892-013-0372-1.

    Article  CAS  PubMed  Google Scholar 

  58. Lerner AG, Upton JP, Praveen PV, Ghosh R, Nakagawa Y, Igbaria A, et al. IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab. 2012;16(2):250–64. doi:10.1016/j.cmet.2012.07.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Oslowski CM, Hara T, O’Sullivan-Murphy B, Kanekura K, Lu S, Hara M, et al. Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab. 2012;16(2):265–73. doi:10.1016/j.cmet.2012.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nakamura T, Furuhashi M, Li P, Cao H, Tuncman G, Sonenberg N, et al. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell. 2010;140(3):338–48. doi:10.1016/j.cell.2010.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang L, Calay ES, Fan J, Arduini A, Kunz RC, Gygi SP, et al. METABOLISM. S-Nitrosylation links obesity-associated inflammation to endoplasmic reticulum dysfunction. Science. 2015;349(6247):500–6. doi:10.1126/science.aaa0079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ozawa K, Tsumoto H, Wei W, Tang CH, Komatsubara AT, Kawafune H, et al. Proteomic analysis of the role of S-nitrosoglutathione reductase in lipopolysaccharide-challenged mice. Proteomics. 2012;12(12):2024–35. doi:10.1002/pmic.201100666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu W, Liu L, Charles IG, Moncada S. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat Cell Biol. 2004;6(11):1129–34. doi:10.1038/ncb1188.

    Article  CAS  PubMed  Google Scholar 

  64. Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, et al. IRE1 signaling affects cell fate during the unfolded protein response. Science. 2007;318(5852):944–9. doi:10.1126/science.1146361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang Y, Vera L, Fischer WH, Montminy M. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature. 2009;460(7254):534–7. doi:10.1038/nature08111.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Maly DJ, Papa FR. Druggable sensors of the unfolded protein response. Nat Chem Biol. 2014;10(11):892–901. doi:10.1038/nchembio.1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ohsumi Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol. 2001;2(3):211–6. doi:10.1038/35056522.

    Article  CAS  PubMed  Google Scholar 

  68. Appelmans F, Wattiaux R, De Duve C. Tissue fractionation studies. 5. The association of acid phosphatase with a special class of cytoplasmic granules in rat liver. Biochem J. 1955;59(3):438–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. •• De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955;60(4):604–17. This study was the first that discovered the lysosome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Journet A, Chapel A, Kieffer S, Roux F, Garin J. Proteomic analysis of human lysosomes: application to monocytic and breast cancer cells. Proteomics. 2002;2(8):1026–40. doi:10.1002/1615-9861(200208)2:8<1026::AID-PROT1026>3.0.CO;2-I.

    Article  CAS  PubMed  Google Scholar 

  71. Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol. 2010;12(9):814–22. doi:10.1038/ncb0910-814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12(9):823–30. doi:10.1038/ncb0910-823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kaushik S, Cuervo AM. Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 2012;22(8):407–17. doi:10.1016/j.tcb.2012.05.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. De Duve C, Wattiaux R. Functions of lysosomes. Annu Rev Physiol. 1966;28:435–92. doi:10.1146/annurev.ph.28.030166.002251.

    Article  CAS  PubMed  Google Scholar 

  75. Deter RL, Baudhuin P, De Duve C. Participation of lysosomes in cellular autophagy induced in rat liver by glucagon. J Cell Biol. 1967;35(2):C11–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. 2014;510(7503):162–6. doi:10.1038/nature13392.

    CAS  PubMed  Google Scholar 

  77. Iwata J, Ezaki J, Komatsu M, Yokota S, Ueno T, Tanida I, et al. Excess peroxisomes are degraded by autophagic machinery in mammals. J Biol Chem. 2006;281(7):4035–41. doi:10.1074/jbc.M512283200.

    Article  CAS  PubMed  Google Scholar 

  78. Tripathi DN, Walker CL. The peroxisome as a cell signaling organelle. Curr Opin Cell Biol. 2016;39:109–12. doi:10.1016/j.ceb.2016.02.017.

    Article  CAS  PubMed  Google Scholar 

  79. • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, et al. Autophagy regulates lipid metabolism. Nature. 2009;458(7242):1131–5. doi:10.1038/nature07976. This study established the concept of lipophagy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bernales S, Schuck S, Walter P. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy. 2007;3(3):285–7.

    Article  PubMed  Google Scholar 

  81. Schneider JL, Cuervo AM. Liver autophagy: much more than just taking out the trash. Nat Rev Gastroenterol Hepatol. 2014;11(3):187–200. doi:10.1038/nrgastro.2013.211.

    Article  PubMed  Google Scholar 

  82. Ueno T, Komatsu M. Autophagy in the liver: functions in health and disease. Nat Rev Gastroenterol Hepatol. 2017;14(3):170–84. doi:10.1038/nrgastro.2016.185.

    Article  CAS  PubMed  Google Scholar 

  83. Deretic V. Autophagy as an immune defense mechanism. Curr Opin Immunol. 2006;18(4):375–82. doi:10.1016/j.coi.2006.05.019.

    Article  CAS  PubMed  Google Scholar 

  84. Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature. 2011;469(7330):323–35. doi:10.1038/nature09782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Delgado MA, Elmaoued RA, Davis AS, Kyei G, Deretic V. Toll-like receptors control autophagy. EMBO J. 2008;27(7):1110–21. doi:10.1038/emboj.2008.31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cooney R, Baker J, Brain O, Danis B, Pichulik T, Allan P, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010;16(1):90–7. doi:10.1038/nm.2069.

    Article  CAS  PubMed  Google Scholar 

  87. • Talloczy Z, Virgin HW, Levine B. PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy. 2006;2(1):24–9. This study demonstrated the role of autophagy in immunity.

    Article  CAS  PubMed  Google Scholar 

  88. Talloczy Z, Jiang W, Virgin HW, Leib DA, Scheuner D, Kaufman RJ, et al. Regulation of starvation- and virus-induced autophagy by the eIF2alpha kinase signaling pathway. Proc Natl Acad Sci U S A. 2002;99(1):190–5. doi:10.1073/pnas.012485299.

    Article  CAS  PubMed  Google Scholar 

  89. Jia G, Cheng G, Gangahar DM, Agrawal DK. Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol Cell Biol. 2006;84(5):448–54. doi:10.1111/j.1440-1711.2006.01454.x.

    Article  CAS  PubMed  Google Scholar 

  90. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, et al. NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem. 2006;281(41):30373–82. doi:10.1074/jbc.M602097200.

    Article  CAS  PubMed  Google Scholar 

  91. Singh SB, Ornatowski W, Vergne I, Naylor J, Delgado M, Roberts E, et al. Human IRGM regulates autophagy and cell-autonomous immunity functions through mitochondria. Nat Cell Biol. 2010;12(12):1154–65. doi:10.1038/ncb2119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schroder K, Zhou R, Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science. 2010;327(5963):296–300. doi:10.1126/science.1184003.

    Article  CAS  PubMed  Google Scholar 

  93. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science. 2007;315(5817):1398–401. doi:10.1126/science.1136880.

    Article  CAS  PubMed  Google Scholar 

  94. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 2011;12(3):222–30. doi:10.1038/ni.1980.

    Article  CAS  PubMed  Google Scholar 

  95. Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A. 2009;106(8):2770–5. doi:10.1073/pnas.0807694106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature. 2008;455(7211):396–400. doi:10.1038/nature07208.

    Article  CAS  PubMed  Google Scholar 

  97. Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, et al. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science. 2005;307(5709):593–6. doi:10.1126/science.1104904.

    Article  CAS  PubMed  Google Scholar 

  98. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(19):1845–6. doi:10.1056/NEJMc1303158.

    Article  CAS  PubMed  Google Scholar 

  99. Schneider JL, Suh Y, Cuervo AM. Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation. Cell Metab. 2014;20(3):417–32. doi:10.1016/j.cmet.2014.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. • Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010;11(6):467–78. doi:10.1016/j.cmet.2010.04.005. This article established the link between the UPR and autophagy in obesity-associated insulin resistence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Fukuo Y, Yamashina S, Sonoue H, Arakawa A, Nakadera E, Aoyama T, et al. Abnormality of autophagic function and cathepsin expression in the liver from patients with non-alcoholic fatty liver disease. Hepatol Res. 2014;44(9):1026–36. doi:10.1111/hepr.12282.

    Article  CAS  PubMed  Google Scholar 

  102. Gonzalez-Rodriguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilena-Colina ME, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 2014;5:e1179. doi:10.1038/cddis.2014.162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. DeBosch BJ, Heitmeier MR, Mayer AL, Higgins CB, Crowley JR, Kraft TE, et al. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci Signal. 2016;9(416):ra21. doi:10.1126/scisignal.aac5472.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sinha RA, Farah BL, Singh BK, Siddique MM, Li Y, Wu Y, et al. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology. 2014;59(4):1366–80. doi:10.1002/hep.26667.

    Article  CAS  PubMed  Google Scholar 

  105. Sun L, Zhang S, Yu C, Pan Z, Liu Y, Zhao J, et al. Hydrogen sulfide reduces serum triglyceride by activating liver autophagy via the AMPK-mTOR pathway. Am J Physiol Endocrinol Metab. 2015;309(11):E925–35. doi:10.1152/ajpendo.00294.2015.

    CAS  PubMed  Google Scholar 

  106. Fan Y, Wang N, Rocchi A, Zhang W, Vassar R, Zhou Y, et al. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy. 2017;13(1):41–56. doi:10.1080/15548627.2016.1240855.

    Article  CAS  PubMed  Google Scholar 

  107. Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ. Potential therapeutic applications of autophagy. Nat Rev Drug Discov. 2007;6(4):304–12. doi:10.1038/nrd2272.

    Article  CAS  PubMed  Google Scholar 

  108. Shoji-Kawata S, Sumpter R, Leveno M, Campbell GR, Zou Z, Kinch L, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013;494(7436):201–6. doi:10.1038/nature11866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Marino G, Pietrocola F, Madeo F, Kroemer G. Caloric restriction mimetics: natural/physiological pharmacological autophagy inducers. Autophagy. 2014;10(11):1879–82. doi:10.4161/auto.36413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature. 2012;481(7382):511–5. doi:10.1038/nature10758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lira VA, Okutsu M, Zhang M, Greene NP, Laker RC, Breen DS, et al. Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J. 2013;27(10):4184–93. doi:10.1096/fj.13-228486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lavallard VJ, Gual P. Autophagy and non-alcoholic fatty liver disease. Biomed Res Int. 2014;2014:120179. doi:10.1155/2014/120179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Liu HY, Han J, Cao SY, Hong T, Zhuo D, Shi J, et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem. 2009;284(45):31484–92. doi:10.1074/jbc.M109.033936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Komatsu M. Liver autophagy: physiology and pathology. J Biochem. 2012;152(1):5–15. doi:10.1093/jb/mvs059.

    Article  CAS  PubMed  Google Scholar 

  115. Koga H, Kaushik S, Cuervo AM. Altered lipid content inhibits autophagic vesicular fusion. FASEB J. 2010;24(8):3052–65. doi:10.1096/fj.09-144519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Inami Y, Yamashina S, Izumi K, Ueno T, Tanida I, Ikejima K, et al. Hepatic steatosis inhibits autophagic proteolysis via impairment of autophagosomal acidification and cathepsin expression. Biochem Biophys Res Commun. 2011;412(4):618–25. doi:10.1016/j.bbrc.2011.08.012.

    Article  CAS  PubMed  Google Scholar 

  117. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol. 2009;11(12):1433–7. doi:10.1038/ncb1991.

    Article  CAS  PubMed  Google Scholar 

  118. Tooze SA, Yoshimori T. The origin of the autophagosomal membrane. Nat Cell Biol. 2010;12(9):831–5. doi:10.1038/ncb0910-831.

    Article  CAS  PubMed  Google Scholar 

  119. B’Chir W, Maurin AC, Carraro V, Averous J, Jousse C, Muranishi Y, et al. The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013;41(16):7683–99. doi:10.1093/nar/gkt563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell. 2008;30(6):678–88. doi:10.1016/j.molcel.2008.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Margariti A, Li H, Chen T, Martin D, Vizcay-Barrena G, Alam S, et al. XBP1 mRNA splicing triggers an autophagic response in endothelial cells through BECLIN-1 transcriptional activation. J Biol Chem. 2013;288(2):859–72. doi:10.1074/jbc.M112.412783.

    Article  CAS  PubMed  Google Scholar 

  122. Vidal RL, Figueroa A, Court FA, Thielen P, Molina C, Wirth C, et al. Targeting the UPR transcription factor XBP1 protects against Huntington’s disease through the regulation of FoxO1 and autophagy. Hum Mol Genet. 2012;21(10):2245–62. doi:10.1093/hmg/dds040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhao Y, Li X, Cai MY, Ma K, Yang J, Zhou J, et al. XBP-1u suppresses autophagy by promoting the degradation of FoxO1 in cancer cells. Cell Res. 2013;23(4):491–507. doi:10.1038/cr.2013.2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gade P, Ramachandran G, Maachani UB, Rizzo MA, Okada T, Prywes R, et al. An IFN-gamma-stimulated ATF6-C/EBP-beta-signaling pathway critical for the expression of death associated protein kinase 1 and induction of autophagy. Proc Natl Acad Sci U S A. 2012;109(26):10316–21. doi:10.1073/pnas.1119273109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhou Y, Zhang S, Dai C, Tang S, Yang X, Li D, et al. Quinocetone triggered ER stress-induced autophagy via ATF6/DAPK1-modulated mAtg9a trafficking. Cell Biol Toxicol. 2016;32(2):141–52. doi:10.1007/s10565-016-9323-3.

    Article  CAS  PubMed  Google Scholar 

  126. • Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol. 2006;26(24):9220–31. doi:10.1128/MCB.01453-06. This study provided the first link between UPR and autophagy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Yang H, Ni HM, Guo F, Ding Y, Shi YH, Lahiri P, et al. Sequestosome 1/p62 protein is associated with autophagic removal of excess hepatic endoplasmic reticulum in mice. J Biol Chem. 2016;291(36):18663–74. doi:10.1074/jbc.M116.739821.

    Article  CAS  PubMed  Google Scholar 

  128. Kim RS, Hasegawa D, Goossens N, Tsuchida T, Athwal V, Sun X, et al. The XBP1 arm of the unfolded protein response induces fibrogenic activity in hepatic stellate cells through autophagy. Sci Rep. 2016;6:39342. doi:10.1038/srep39342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, Bock J, Martinez-Naves E, et al. Paneth cells as a site of origin for intestinal inflammation. Nature. 2013;503(7475):272–6. doi:10.1038/nature12599.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Seki E, Schwabe RF. Hepatic inflammation and fibrosis: functional links and key pathways. Hepatology. 2015;61(3):1066–79. doi:10.1002/hep.27332.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Tang T, Sui Y, Lian M, Li Z, Hua J. Pro-inflammatory activated Kupffer cells by lipids induce hepatic NKT cells deficiency through activation-induced cell death. PLoS One. 2013;8(12):e81949. doi:10.1371/journal.pone.0081949.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Boaru SG, Borkham-Kamphorst E, Tihaa L, Haas U, Weiskirchen R. Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease. J Inflamm (Lond). 2012;9(1):49. doi:10.1186/1476-9255-9-49.

    Article  CAS  Google Scholar 

  133. Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI, Yue Z, et al. Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology. 2012;142(4):938–46. doi:10.1053/j.gastro.2011.12.044.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7. doi:10.1038/nature05485.

    Article  CAS  PubMed  Google Scholar 

  135. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112(12):1821–30. doi:10.1172/JCI19451112/12/1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115(5):1343–51. doi:10.1172/JCI23621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. •• Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87–91. This study provided the first evidence that obesity is associated with inflammation.

    Article  CAS  PubMed  Google Scholar 

  138. Saxena NK, Anania FA. Adipocytokines and hepatic fibrosis. Trends Endocrinol Metab. 2015;26(3):153–61. doi:10.1016/j.tem.2015.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kovsan J, Bluher M, Tarnovscki T, Kloting N, Kirshtein B, Madar L, et al. Altered autophagy in human adipose tissues in obesity. J Clin Endocrinol Metab. 2011;96(2):E268–77. doi:10.1210/jc.2010-1681.

    Article  CAS  PubMed  Google Scholar 

  140. Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, et al. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest. 2009;119(11):3329–39. doi:10.1172/JCI39228.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Deivanayagam S, Mohammed BS, Vitola BE, Naguib GH, Keshen TH, Kirk EP, et al. Nonalcoholic fatty liver disease is associated with hepatic and skeletal muscle insulin resistance in overweight adolescents. Am J Clin Nutr. 2008;88(2):257–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, et al. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104(31):12587–94. doi:10.1073/pnas.0705408104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Rabol R, Petersen KF, Dufour S, Flannery C, Shulman GI. Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A. 2011;108(33):13705–9. doi:10.1073/pnas.1110105108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cho J, Lee I, Kim D, Koh Y, Kong J, Lee S, et al. Effect of aerobic exercise training on non-alcoholic fatty liver disease induced by a high fat diet in C57BL/6 mice. J Exerc Nutr Biochem. 2014;18(4):339–46. doi:10.5717/jenb.2014.18.4.339.

    Article  Google Scholar 

  145. Wu J, Ruas JL, Estall JL, Rasbach KA, Choi JH, Ye L, et al. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1alpha/ATF6alpha complex. Cell Metab. 2011;13(2):160–9. doi:10.1016/j.cmet.2011.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mehal WZ. The Gordian knot of dysbiosis, obesity and NAFLD. Nat Rev Gastroenterol Hepatol. 2013;10(11):637–44. doi:10.1038/nrgastro.2013.146.

    Article  PubMed  Google Scholar 

  147. • Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107–32. doi:10.1146/annurev-cellbio-092910-154005. This study revealed the temporal-spatial regulation of autophagy.

    Article  CAS  PubMed  Google Scholar 

  148. • Ni HM, Williams JA, Jaeschke H, Ding WX. Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver. Redox Biol. 2013;1:427–32. doi:10.1016/j.redox.2013.08.005. This study showed the spatial regulation of hepatic autophagy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Taylor RC, Berendzen KM, Dillin A. Systemic stress signalling: understanding the cell non-autonomous control of proteostasis. Nat Rev Mol Cell Biol. 2014;15(3):211–7. doi:10.1038/nrm3752.

    Article  CAS  PubMed  Google Scholar 

  150. Mahadevan NR, Anufreichik V, Rodvold JJ, Chiu KT, Sepulveda H, Zanetti M. Cell-extrinsic effects of tumor ER stress imprint myeloid dendritic cells and impair CD8(+) T cell priming. PLoS One. 2012;7(12):e51845. doi:10.1371/journal.pone.0051845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Autophagy in Pathobiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lind, N.R., Qian, Q. & Yang, L. ER Stress and Autophagy in Obesity and Nonalcoholic Fatty Liver Disease. Curr Pathobiol Rep 5, 289–299 (2017). https://doi.org/10.1007/s40139-017-0145-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40139-017-0145-7

Keywords

Navigation