Skip to main content

Advertisement

Log in

Recent Developments in Understanding the Role of Aqueous Humor Outflow in Normal and Primary Open Angle Glaucoma

  • Diagnosis and Monitoring of Glaucoma (R. Kuchtey, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

Primary open-angle glaucoma (POAG) is the second leading cause of blindness in the world’s rapidly aging population. POAG is characterized by progressive degeneration of neural structures in the posterior segment, often associated with a concomitant elevation of intraocular pressure (IOP). Changes in IOP are believed to be caused by a disruption in the normal outflow of aqueous humor (AH). This article reviews recent research associated with normal and POAG AH outflow. Novel findings elucidating biochemical and pathological changes in the ocular tissues affected in POAG are presented. Stem cell research, identification of lymphatic markers, and increased use of mouse models give researchers exciting new tools to understand AH outflow, changes associated with POAG, and identify underlying causes of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Overby DR, Stamer WD, Johnson M. The changing paradigm of outflow resistance generation: towards synergistic models of the JCT and inner wall endothelium. Exp Eye Res. 2009;88(4):656–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Grant WM. Further studies on facility of flow through the trabecular meshwork. AMA Arch Ophthalmol. 1958;60(4 Part 1):523–33.

    Article  CAS  PubMed  Google Scholar 

  4. Ethier CR, et al. Two pore types in the inner-wall endothelium of Schlemm’s canal. Invest Ophthalmol Vis Sci. 1998;39:2041–8.

    CAS  PubMed  Google Scholar 

  5. Dvorak-Theobald G. Further studies on the canal of Schlemm. Its anastomoses and anatomic relations. Am J Ophthalmol. 1955;39:65–89.

    Article  CAS  PubMed  Google Scholar 

  6. Rohen JW, Rentsch FJ. Uber den Bau des Schlemmschen Kanals und seiner AbfluBwege beim Menschen. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1968;176:309–29.

    Article  CAS  PubMed  Google Scholar 

  7. Johnstone MA. The aqueous outflow system as a mechanical pump: evidence from examination of tissue and aqueous movement in human and non-human primates. J Glaucoma. 2004;13(5):421–38.

    Article  PubMed  Google Scholar 

  8. Johnstone M, Martin E, Jamil A. Pulsatile flow into the aqueous veins: manifestations in normal and glaucomatous eyes. Exp Eye Res. 2011;92(5):318–27.

    Article  CAS  PubMed  Google Scholar 

  9. Coleman DJ, Trokel S. Direct-recorded intraocular pressure variations in a human subject. Arch Ophthalmol. 1969;82(5):637–40.

    Article  CAS  PubMed  Google Scholar 

  10. Johnstone MA, Grant WG. Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. Am J Ophthalmol. 1973;75(3):365–83.

    Article  CAS  PubMed  Google Scholar 

  11. Grierson I, Lee WR. Changes in the monkey outflow apparatus at graded levels of intraocular pressure: a qualitative analysis by light microscopy and scanning electron microscopy. Exp Eye Res. 1974;19(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  12. Johnson M, et al. The pore density in the inner wall endothelium of Schlemm’s canal of glaucomatous eyes. Invest Ophthalmol Vis Sci. 2002;43:2950–5.

    PubMed  Google Scholar 

  13. •• Hann CR, et al. Anatomic changes in Schlemm’s canal and collector channels in normal and primary open-angle glaucoma eyes using low and high perfusion pressures. Invest Ophthalmol Vis Sci. 2014;55(9):5834–41. A possible compensatory mechanism for elevated pressure may be found in increased numbers of collector channels in normal and glaucoma eyes.

  14. •• Yang CY, et al. Endothelial glycocalyx layer in the aqueous outflow pathway of bovine and human eyes. Exp Eye Res. 2014;128:27–33. Finding a glycocalyx on Schlemm’s canal and collector channel endothelial surfaces enlarges the biosensory role these cells may play in the outflow pathway.

  15. Tarbell JM, Ebong EE. The endothelial glycocalyx: a mechano-sensor and -transducer. Sci Signal. 2008;1(40):1–5.

    Article  Google Scholar 

  16. Alm A. Uveoscleral outflow—a review. Exp Eye Res. 2009;88(4):760–8.

    Article  CAS  PubMed  Google Scholar 

  17. Alvarado J, et al. Age-related changes in trabecular meshwork cellularity. Invest Ophthalmol Vis Sci. 1981;21:714–27.

    CAS  PubMed  Google Scholar 

  18. Teng CC, Paton RT, Katzin HM. Primary degeneration in the vicinity of the chamber angle; as an etiologic factor in wide-angle glaucoma. Am J Ophthalmol. 1955;40(5 Part 1):619–31.

    Article  CAS  PubMed  Google Scholar 

  19. Johnson M, et al. The pore density in the inner wall endothelium of Schlemm’s canal of glaucomatous eyes. Invest Ophthalmol Vis Sci. 2002;43(9):2950–5.

    PubMed  Google Scholar 

  20. Allingham RR, de Kater AW, Ethier CR. Schlemm’s canal and primary open angle glaucoma: correlation between Schlemm’s canal dimensions and outflow facility. Exp Eye Res. 1996;62(1):101–9.

    Article  CAS  PubMed  Google Scholar 

  21. Chi HH, Katzin HM, Teng CC. Primary degeneration in the vicinity of the chamber angle; as an etiologic factor in wide-angle glaucoma. II. Am J Ophthalmol. 1957;43(2):193–203.

    Article  CAS  PubMed  Google Scholar 

  22. Tamm S, Tamm E, Rohen JW. Age-related changes of the human ciliary muscle. A quantitative morphometric study. Mech Ageing Dev. 1992;62(2):209–21.

    Article  CAS  PubMed  Google Scholar 

  23. Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. Exp Eye Res. 2008;86(4):543–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. •• Keller KE, et al. Segmental versican expression in the trabecular meshwork and involvement in outflow facility. Invest Ophthalmol Vis Sci. 2011;52(8):5049–57. The segmental distribution of versican and its effect on outflow may partially explain the segmental nature of aqueous outflow.

  25. Keller KE, et al. Effects of modifiers of glycosaminoglycan biosynthesis on outflow facility in perfusion culture. Invest Ophthalmol Vis Sci. 2008;49(6):2495–505.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Knepper PA, Goossens W, Palmberg PF. Glycosaminoglycan stratification of the juxtacanalicular tissue in normal and primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1996;37(12):2414–25.

    CAS  PubMed  Google Scholar 

  27. Bradley J, Vranka J, Colvis CM, Conger DM, Alexander JP, Fisk AS, Samples JR, Acott TS. Effect of matrix metalloproteinases activity on outflow in perfused human organ culture. Invest Ophthalmol Vis Sci. 1998;39(13):2649–58.

    CAS  PubMed  Google Scholar 

  28. Aga M, et al. Differential effects of caveolin-1 and -2 knockdown on aqueous outflow and altered extracellular matrix turnover in caveolin-silenced trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2014;55(9):5497–509.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Wiggs JL, et al. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum Mol Genet. 2011;20(23):4707–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Oh DJ, et al. Overexpression of SPARC in human trabecular meshwork increases intraocular pressure and alters extracellular matrix. Invest Ophthalmol Vis Sci. 2013;54(5):3309–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Swaminathan SS, et al. TGF-beta2-mediated ocular hypertension is attenuated in SPARC-null mice. Invest Ophthalmol Vis Sci. 2014;55(7):4084–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Fuchshofer R, et al. Bone morphogenetic protein-7 is an antagonist of transforming growth factor-beta2 in human trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2007;48(2):715–26.

    Article  PubMed  Google Scholar 

  33. Chowdhury UR, et al. Expression profile of the matricellular protein osteopontin in primary open-angle glaucoma and the normal human eye. Invest Ophthalmol Vis Sci. 2011;52(9):6443–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Chatterjee A, et al. The role of SPARC in trabecular meshwork extracellular matrix turnover and IOP regulation. Glaucoma Today; 2012. October, p. 12–5.

  35. Fuchshofer R, Tamm ER. Modulation of extracellular matrix turnover in the trabecular meshwork. Exp Eye Res. 2009;88(4):683–8.

    Article  CAS  PubMed  Google Scholar 

  36. Villarreal G Jr, et al. Canonical wnt signaling regulates extracellular matrix expression in the trabecular meshwork. Invest Ophthalmol Vis Sci. 2014;55(11):7433–40.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Chatterjee A, et al. AMP-activated protein kinase regulates intraocular pressure, extracellular matrix, and cytoskeleton in trabecular meshwork. Invest Ophthalmol Vis Sci. 2014;55(5):3127–39.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Braakman ST, et al. Biomechanical strain as a trigger for pore formation in Schlemm’s canal endothelial cells. Exp Eye Res. 2014;127:224–35.

    Article  CAS  PubMed  Google Scholar 

  39. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69(1):11–25.

    Article  CAS  PubMed  Google Scholar 

  40. Ramage L. Integrins and extracellular matrix in mechanotransduction. Cell Health Cytoskelet. 2012;4:1–9.

    CAS  Google Scholar 

  41. Wolfenson H, Lavelin I, Geiger B. Dynamic regulation of the structure and functions of integrin adhesions. Dev Cell. 2013;24(5):447–58.

    Article  CAS  PubMed  Google Scholar 

  42. Tervo K, et al. Integrins in human anterior chamber angle. Graefes Arch Clin Exp Ophthalmol. 1995;233(5):291–5.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou L, et al. Expression of integrin receptors in the human trabecular meshwork. Curr Eye Res. 1999;19(5):395–402.

    Article  PubMed  Google Scholar 

  44. Schwinn MK, et al. Heparin II domain of fibronectin mediates contractility through an alpha4beta1 co-signaling pathway. Exp Cell Res. 2010;316(9):1500–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Filla MS, et al. regulation of cross-linked actin network (CLAN) formation in human trabecular meshwork (HTM) cells by convergence of distinct β1 and β3 integrin pathways. Invest Ophthalmol Vis Sci. 2009;50(12):5723–31.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Tian B, et al. Cytoskeletal involvement in the regulation of aqueous humor outflow. Invest Ophthalmol Vis Sci. 2000;41:619–23.

    CAS  PubMed  Google Scholar 

  47. Last JA, et al. Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci. 2011;52(5):2147–52.

    Article  PubMed Central  PubMed  Google Scholar 

  48. •• Overby DR, et al. The structure of the trabecular meshwork, its connections to the ciliary muscle, and the effect of pilocarpine on outflow facility in mice. Invest Ophthalmol Vis Sci. 2014;55(6):3727–36. Similarities between the mouse and human outflow pathways, particularly in response to pilocarpine and in the structure of the ciliary muscle, lend further strength to use of the mouse as a model for POAG research.

  49. Junglas B, et al. Connective tissue growth factor causes glaucoma by modifying the actin cytoskeleton of the trabecular meshwork. Am J Pathol. 2012;180(6):2386–403.

    Article  CAS  PubMed  Google Scholar 

  50. Overby DR, et al. Altered mechanobiology of Schlemm’s canal endothelial cells in glaucoma. Proc Natl Acad Sci. 2014;111(38):13876–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Zhou EH, et al. Mechanical responsiveness of the endothelial cell of Schlemm’s canal: scope, variability and its potential role in controlling aqueous humour outflow. J R Soc Interface. 2012;9(71):1144–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Stamer WD, et al. eNOS, a pressure-dependent regulator of intraocular pressure. Invest Ophthalmol Vis Sci. 2011;52(13):9438–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Lei Y, et al. Endothelial nitric oxide synthase-related mechanotransduction changes in aged porcine angular aqueous plexus cells. Invest Ophthalmol Vis Sci. 2014;55(12):8402–8.

    Article  CAS  PubMed  Google Scholar 

  54. Alvarado J, Murphy C, Juster R. Trabecular meshwork cellularity in POAG and nonglaucomatous normals. Ophthalmology. 1984;91:564–79.

    Article  CAS  PubMed  Google Scholar 

  55. Du Y, et al. Multipotent stem cells from trabecular meshwork become phagocytic TM cells. Invest Ophthalmol Vis Sci. 2012;53(3):1566–75.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Braunger BM, et al. Identification of adult stem cells in Schwalbe’s line region of the primate eye. Invest Ophthalmol Vis Sci. 2014;55(11):7499–507.

    Article  PubMed  Google Scholar 

  57. Acott TS, et al. Trabecular repopulation by anterior trabecular meshwork cells after laser trabeculoplasty. Am J Ophthalmol. 1989;107(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  58. •• Ding QJ, et al. Induction of trabecular meshwork cells from induced pluripotent stem cells. Invest Ophthalmol Vis Sci. 2014;55(11):7065–72. The induction of multipotent stem cells to become phagocytic TM cells could lead to future use of cell-based therapies to treat POAG.

  59. Thiery JP, et al. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139(5):871–90.

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi E, et al. Epithelial mesenchymal transition-like phenomenon in trabecular meshwork cells. Exp Eye Res. 2014;118:72–9.

    Article  CAS  PubMed  Google Scholar 

  61. Lei Y, et al. Outflow physiology of the mouse eye: pressure dependence and washout. Invest Ophthalmol Vis Sci. 2011;52(3):1865–71.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Li G, et al. Pilocarpine-induced dilation of Schlemm’s canal and prevention of lumen collapse at elevated intraocular pressures in living mice visualized by OCT. Invest Ophthalmol Vis Sci. 2014;55(6):3737–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Boussommier-Calleja A, Overby DR. The influence of genetic background on conventional outflow facility in mice. Invest Ophthalmol Vis Sci. 2013;54(13):8251–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Millar JC, Clark AF, Pang IH. Assessment of aqueous humor dynamics in the mouse by a novel method of constant-flow infusion. Invest Ophthalmol Vis Sci. 2011;52(2):685–94.

    Article  PubMed  Google Scholar 

  65. Anderson MG, et al. Mutations in genes encoding melanosomal proteins cause pigmentary glaucoma in DBA/2J mice. Nat Genet. 2002;30(1):81–5.

    Article  CAS  PubMed  Google Scholar 

  66. Aihara M, Lindsey JD, Weinreb RN. Aqueous humor dynamics in mice. Invest Ophthalmol Vis Sci. 2003;44:5168–73.

    Article  PubMed  Google Scholar 

  67. Zhou Y, Grinchuk O, Tomarev SI. Transgenic mice expressing the Tyr437His mutant of human myocilin protein develop glaucoma. Invest Ophthalmol Vis Sci. 2008;49:1932–9.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Guorong L, et al. Disease progression in iridocorneal angle tissues of BMP2-induced ocular hypertensive mice with optical coherence tomography. Mol Vis. 2014;20:1695–709.

    Google Scholar 

  69. Ramos RF, et al. Schlemm’s canal endothelia, lymphatic, or blood vasculature? J Glaucoma. 2007;16(4):391–405.

    Article  PubMed  Google Scholar 

  70. Yucel YH, et al. Identification of lymphatics in the ciliary body of the human eye: a novel “uveolymphatic” outflow pathway. Exp Eye Res. 2009;89(5):810–9.

    Article  PubMed  Google Scholar 

  71. •• Park DY, et al. Lymphatic regulator PROX1 determines Schlemm’s canal integrity and identity. J Clin Invest. 2014;124(9):3960–74. Identification of the lymphatic regulator PROX1 and its role in the development of Schlemm’s canal adds new evidence supporting a possible lymphatic system in the conventional outflow pathway.

  72. Aspelund A, et al. The Schlemm’s canal is a VEGF-C/VEGFR-3-responsive lymphatic-like vessel. J Clin Invest. 2014;124(9):3975–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Bradley JM, et al. Effects of mechanical stretching on trabecular matrix metalloproteinases. Invest Ophthalmol Vis Sci. 2001;42(7):1505–13.

    CAS  PubMed  Google Scholar 

  74. •• Acott TS, et al. Intraocular pressure homeostasis: maintaining balance in a high-pressure environment. J Ocul Pharmacol Ther. 2014;30(2–3):94–101. An excellent review of intraocular homeostasis and the factors that influence it.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Fautsch.

Additional information

This article is part of the Topical Collection on Diagnosis and Monitoring of Glaucoma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hann, C.R., Fautsch, M.P. Recent Developments in Understanding the Role of Aqueous Humor Outflow in Normal and Primary Open Angle Glaucoma. Curr Ophthalmol Rep 3, 67–73 (2015). https://doi.org/10.1007/s40135-015-0072-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-015-0072-x

Keywords

Navigation