Skip to main content

Advertisement

Log in

Positron Emission Tomography and Molecular Imaging of Head and Neck Malignancies

  • NUCLEAR MEDICINE & PET/CT IMAGING (R FLAVELL, SECTION EDITOR)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Metabolic reprogramming and avid fluorodeoxyglucose (FDG) uptake in locally advanced head and neck squamous cell carcinomas and other cancers of the upper aerodigestive tract lead to favorable sensitivity and diagnostic accuracy of FDG PET/CT or PET/MR compared to conventional imaging. Meanwhile, the role of non-FDG PET in head and neck malignancies is rapidly expanding.

Recent Findings

Accurate staging, identifying a clinically occult primary, or detection of distant metastasis or a synchronous malignancy on FDG PET significantly impacts management. FDG uptake after definitive therapy is an invaluable biomarker for surveillance. Patients with metabolic resolution can be spared from neck dissection, whereas FDG avid refractory disease or distant metastasis could necessitate surgical or systemic therapy. PET tracers targeting amino acid transport or fibroblast activation hold promise for improved specificity and better delineation of tumor prior to radiation therapy given their low physiologic or inflammatory uptake in head and neck compared to FDG. Tracers for hypoxia or cellular proliferation provide complementary information to FDG after radiation therapy for assessment of residual malignant cells that could lead to treatment failure. FDG remains the primary tracer for imaging lymphoma and other pediatric head and neck malignancies. Several other PET tracers such as gallium-68-labeled somatostatin receptor analogs and fluorodopa are being increasingly used for detection and characterization of head and neck paragangliomas and certain other cancers.

Summary

FDG and other PET radiopharmaceuticals are increasingly being exploited in guiding clinical management of various head and neck malignancies and significantly impact patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Papadimitrakopoulou V, Izzo J, Lippman SM, et al. Frequent inactivation of p16INK4a in oral premalignant lesions. Oncogene. 1997;14(15):1799–803.

    CAS  PubMed  Google Scholar 

  2. Agarwal S, Mathur M, Srivastava A, et al. MDM2/p53 co-expression in oral premalignant and malignant lesions: potential prognostic implications. Oral Oncol. 1999;35(2):209–16.

    CAS  PubMed  Google Scholar 

  3. Chen X, Cao Y, Sedhom W, et al. Distinct roles of PIK3CA in the enrichment and maintenance of cancer stem cells in head and neck squamous cell carcinoma. Mol Oncol. 2020;14(1):139–58.

    CAS  PubMed  Google Scholar 

  4. Chen C, Zimmermann M, Tinhofer I, et al. Epithelial-to-mesenchymal transition and cancer stem(-like) cells in head and neck squamous cell carcinoma. Cancer Lett. 2013;338(1):47–56.

    CAS  PubMed  Google Scholar 

  5. Rodrigues RS, Bozza FA, Christian PE, et al. Comparison of whole-body PET/CT, dedicated high-resolution head and neck PET/CT, and contrast-enhanced CT in preoperative staging of clinically M0 squamous cell carcinoma of the head and neck. J Nucl Med. 2009;50(8):1205–13.

    PubMed  Google Scholar 

  6. Boellaard R, Delgado-Bolton R, Oyen WJ, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42(2):328–54.

    CAS  PubMed  Google Scholar 

  7. Partovi S, Kohan A, Vercher-Conejero JL, et al. Qualitative and quantitative performance of 18F-FDG-PET/MRI versus 18F-FDG-PET/CT in patients with head and neck cancer. Am J Neuroradiol. 2014;35(10):1970–5.

    CAS  PubMed  Google Scholar 

  8. Martens RM, Noij DP, Koopman T, et al. Predictive value of quantitative diffusion-weighted imaging and 18-F-FDG-PET in head and neck squamous cell carcinoma treated by (chemo)radiotherapy. Eur J Radiol. 2019;113:39–50.

    PubMed  Google Scholar 

  9. Samolyk-Kogaczewska N, Sierko E, Dziemianczyk-Pakiela D, et al. Usefulness of hybrid PET/MRI in clinical evaluation of head and neck cancer patients. Cancers (Basel). 2020;12(2):511.

    CAS  Google Scholar 

  10. Yeh CH, Chan SC, Lin CY, et al. Comparison of (18)F-FDG PET/MRI, MRI, and (18)F-FDG PET/CT for the detection of synchronous cancers and distant metastases in patients with oropharyngeal and hypopharyngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2020;47(1):94–104.

    PubMed  Google Scholar 

  11. Kuhn FP, Hüllner M, Mader CE, et al. Contrast-enhanced PET/MR imaging versus contrast-enhanced PET/CT in head and neck cancer: how much MR information is needed? J Nucl Med. 2014;55(4):551–8.

    CAS  PubMed  Google Scholar 

  12. Cheng Y, Bai L, Shang J, et al. Preliminary clinical results for PET/MR compared with PET/CT in patients with nasopharyngeal carcinoma. Oncol Rep. 2020;43(1):177–87.

    CAS  PubMed  Google Scholar 

  13. Chen WS, Li JJ, Hong L, et al. Comparison of MRI, CT and 18F-FDG PET/CT in the diagnosis of local and metastatic of nasopharyngeal carcinomas: an updated meta analysis of clinical studies. Am J Transl Res. 2016;8(11):4532–47.

    PubMed  PubMed Central  Google Scholar 

  14. Jadvar H, Colletti PM, Delgado-Bolton R, et al. Appropriate use criteria for (18)F-FDG PET/CT in restaging and treatment response assessment of malignant disease. J Nucl Med. 2017;58(12):2026–37.

    CAS  PubMed  Google Scholar 

  15. Donohoe KJ, Aloff J, Avram AM, et al. Appropriate use criteria for nuclear medicine in the evaluation and treatment of differentiated thyroid cancer. J Nucl Med. 2020;61(3):375–96.

    CAS  PubMed  Google Scholar 

  16. • Taïeb D, Hicks RJ, Hindié E, et al., European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging. 2019;46(10): 2112–37. This update summarizes clinical utility of various molecular imaging approaches in head and neck paragangliomas and provides practical recommendations for selection of radiopharmaceutical and imaging procedure.

  17. Hope TA, Bergsland EK, Bozkurt MF, et al. Appropriate use criteria for somatostatin receptor PET imaging in neuroendocrine tumors. J Nucl Med. 2018;59(1):66–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang E, Xu Z, Wang M, et al. Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma. FASEB J. 2019;33(4):5690–703.

    CAS  PubMed  Google Scholar 

  19. Law I, Albert NL, Arbizu J, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [(18)F]FDG: version 1.0. Eur J Nucl Med Mol Imaging. 2019;46(3):540–57.

    CAS  PubMed  Google Scholar 

  20. Zhang Z, Liu R, Shuai Y, et al. ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma. Br J Cancer. 2020;122(1):82–93.

    CAS  PubMed  Google Scholar 

  21. Pauleit D, Zimmermann A, Stoffels G, et al. 18F-FET PET compared with 18F-FDG PET and CT in patients with head and neck cancer. J Nucl Med. 2006;47(2):256–61.

    PubMed  Google Scholar 

  22. Haerle SK, Fischer DR, Schmid DT, et al. 18F-FET PET/CT in advanced head and neck squamous cell carcinoma: an intra-individual comparison with 18F-FDG PET/CT. Mol Imaging Biol. 2011;13(5):1036–42.

    PubMed  Google Scholar 

  23. Oka S, Okudaira H, Ono M, et al. Differences in transport mechanisms of trans-1-amino-3-[18F]fluorocyclobutanecarboxylic acid in inflammation, prostate cancer, and glioma cells: comparison with l-[methyl-11C]methionine and 2-deoxy-2-[18F]fluoro-d-glucose. Mol Imaging Biol. 2014;16(3):322–9.

    PubMed  Google Scholar 

  24. Wedman J, Pruim J, Roodenburg JL, et al. Alternative PET tracers in head and neck cancer. A review. Eur Arch Otorhinolaryngol. 2013;270(10):2595–601.

    PubMed  Google Scholar 

  25. Badakhshi H, Graf R, Prasad V, et al. The impact of 18F-FET PET–CT on target definition in image-guided stereotactic radiotherapy in patients with skull base lesions. Cancer Imaging. 2014;14(1):25.

    PubMed  PubMed Central  Google Scholar 

  26. Miyakubo M, Oriuchi N, Tsushima Y, et al. Diagnosis of maxillofacial tumor with l-3-[18f]-fluoro-alpha-methyltyrosine (FMT) PET: a comparative study with FDG-PET. Ann Nucl Med. 2007;21(2):129–35.

    CAS  PubMed  Google Scholar 

  27. Nobusawa A, Kim M, Kaira K, et al. Diagnostic usefulness of 18F-FAMT PET and L-type amino acid transporter 1 (LAT1) expression in oral squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2013;40(11):1692–700.

    CAS  PubMed  Google Scholar 

  28. Raghavan K, Wen KW, Small EJ, et al. Incidentally detected oropharyngeal squamous cell carcinoma on 18F-fluciclovine PET/CT. Clin Nucl Med. 2019;44(5):e367–e369369.

    PubMed  Google Scholar 

  29. Gabriel S, Blanchet EM, Sebag F, et al. Functional characterization of nonmetastatic paraganglioma and pheochromocytoma by (18)F-FDOPA PET: focus on missed lesions. Clin Endocrinol (Oxf). 2013;79(2):170–7.

    CAS  Google Scholar 

  30. Kroiss AS, Uprimny C, Shulkin BL, et al. (68)Ga-DOTATOC PET/CT in the localization of head and neck paraganglioma compared with (18)F-DOPA PET/CT and (123)I-MIBG SPECT/CT. Nucl Med Biol. 2019;71:47–53.

    CAS  PubMed  Google Scholar 

  31. Piccardo A, Morana G, Puntoni M, et al. Diagnosis, treatment response, and prognosis: the role of (18)F-DOPA PET/CT in children affected by neuroblastoma in comparison with (123)I-mIBG scan: the first prospective study. J Nucl Med. 2020;61(3):367–74.

    CAS  PubMed  Google Scholar 

  32. Schaefferkoetter JD, Carlson ER, Heidel RE. Can 3′-deoxy-3′-((18)F) fluorothymidine out perform 2-deoxy-2-((18)F) fluoro-d-glucose positron emission tomography/computed tomography in the diagnosis of cervical lymphadenopathy in patients with oral/head and neck cancer? J Oral Maxillofac Surg. 2015;73(7):1420–8.

    PubMed  Google Scholar 

  33. Troost EG, Vogel WV, Merkx MA, et al. 18F-FLT PET does not discriminate between reactive and metastatic lymph nodes in primary head and neck cancer patients. J Nucl Med. 2007;48(5):726–35.

    PubMed  Google Scholar 

  34. Hoshikawa H, Kishino T, Mori T, et al. The value of 18F-FLT PET for detecting second primary cancers and distant metastases in head and neck cancer patients. Clin Nucl Med. 2013;38(8):e318–e323323.

    PubMed  Google Scholar 

  35. Fatema CN, Zhao S, Zhao Y, et al. Monitoring tumor proliferative response to radiotherapy using (18)F-fluorothymidine in human head and neck cancer xenograft in comparison with Ki-67. Ann Nucl Med. 2013;27(4):355–62.

    CAS  PubMed  Google Scholar 

  36. Kishino T, Hoshikawa H, Nishiyama Y, et al. Usefulness of 3′-deoxy-3′-18F-fluorothymidine PET for predicting early response to chemoradiotherapy in head and neck cancer. J Nucl Med. 2012;53(10):1521–7.

    CAS  PubMed  Google Scholar 

  37. Hoeben BA, Troost EG, Span PN, et al. 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J Nucl Med. 2013;54(4):532–40.

    CAS  PubMed  Google Scholar 

  38. Hoshikawa H, Mori T, Yamamoto Y, et al. Prognostic value comparison between (18)F-FLT PET/CT and (18)F-FDG PET/CT volume-based metabolic parameters in patients with head and neck cancer. Clin Nucl Med. 2015;40(6):464–8.

    PubMed  Google Scholar 

  39. Baxa J, Ferda J, Ferdova E, et al. Hybrid imaging PET/CT with application of (18)F-fluorothymidine in patients with head and neck carcinoma undergoing radiotherapy. Anticancer Res. 2018;38(7):4153–7.

    CAS  PubMed  Google Scholar 

  40. Janssen I, Chen CC, Taieb D, et al. 68Ga-DOTATATE PET/CT in the localization of head and neck paragangliomas compared with other functional imaging modalities and CT/MRI. J Nucl Med. 2016;57(2):186–91.

    CAS  PubMed  Google Scholar 

  41. Parghane RV, Naik C, Talole S, et al. Clinical utility of (177)Lu-DOTATATE PRRT in somatostatin receptor-positive metastatic medullary carcinoma of thyroid patients with assessment of efficacy, survival analysis, prognostic variables, and toxicity. Head Neck. 2020;42(3):401–16.

    PubMed  Google Scholar 

  42. Kasi PM, Sharma A, Jain MK. Expanding the indication for novel theranostic 177Lu-DOTATATE peptide receptor radionuclide therapy: proof-of-concept of PRRT in Merkel cell cancer. Case Rep Oncol. 2019;12(1):98–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Khor LK, Loi HY, Sinha AK, et al. (68)Ga-DOTA-peptide: a novel molecular biomarker for nasopharyngeal carcinoma. Head Neck. 2016;38(4):E76–E80.

    PubMed  Google Scholar 

  44. Unterrainer M, Eze C, Ilhan H, et al. Recent advances of PET imaging in clinical radiation oncology. Radiat Oncol. 2020;15(1):88.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lawhn-Heath C, Flavell RR, Glastonbury C, et al. Incidental detection of head and neck squamous cell carcinoma on 68Ga-PSMA-11 PET/CT. Clin Nucl Med. 2017;42(4):e218–e220220.

    PubMed  Google Scholar 

  46. Klein Nulent TJW, Valstar MH, Smit LA, et al. Prostate-specific membrane antigen (PSMA) expression in adenoid cystic carcinoma of the head and neck. BMC Cancer. 2020;20(1):519.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. van Boxtel W, Lütje S, van Engen-van Grunsven ICH, et al. (68)Ga-PSMA-HBED-CC PET/CT imaging for adenoid cystic carcinoma and salivary duct carcinoma: a phase 2 imaging study. Theranostics. 2020;10(5):2273–83.

    PubMed  PubMed Central  Google Scholar 

  48. Pandit-Taskar N, Postow MA, Hellmann MD, et al. First-in-humans imaging with (89)Zr-Df-IAB22M2C anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J Nucl Med. 2020;61(4):512–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Even AJ, Hamming-Vrieze O, van Elmpt W, et al. Quantitative assessment of zirconium-89 labeled cetuximab using PET/CT imaging in patients with advanced head and neck cancer: a theragnostic approach. Oncotarget. 2017;8(3):3870–80.

    PubMed  Google Scholar 

  50. Keinänen O, Fung K, Pourat J, et al. Pretargeting of internalizing trastuzumab and cetuximab with a (18)F-tetrazine tracer in xenograft models. EJNMMI Res. 2017;7(1):95.

    PubMed  PubMed Central  Google Scholar 

  51. Song IH, Noh Y, Kwon J, et al. Immuno-PET imaging based radioimmunotherapy in head and neck squamous cell carcinoma model. Oncotarget. 2017;8(54):92090–105.

    PubMed  PubMed Central  Google Scholar 

  52. van Helden EJ, Elias SG, Gerritse SL, et al. [(89)Zr]Zr-cetuximab PET/CT as biomarker for cetuximab monotherapy in patients with RAS wild-type advanced colorectal cancer. Eur J Nucl Med Mol Imaging. 2020;47(4):849–59.

    PubMed  Google Scholar 

  53. Bensch F, van der Veen EL, Lub-de Hooge MN, et al. (89)Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24(12):1852–8.

    CAS  PubMed  Google Scholar 

  54. Pierschbacher MD, Ruoslahti E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem. 1987;262(36):17294–8.

    CAS  PubMed  Google Scholar 

  55. Humphries MJ. The molecular basis and specificity of integrin–ligand interactions. J Cell Sci. 1990;97(Pt 4):585–92.

    CAS  PubMed  Google Scholar 

  56. Mahabeleshwar GH, Feng W, Reddy K, et al. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res. 2007;101(6):570–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Beer AJ, Grosu AL, Carlsen J, et al. [18F]galacto-RGD positron emission tomography for imaging of alphavbeta3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13(22 Pt 1):6610–6.

    CAS  PubMed  Google Scholar 

  58. Durante S, Dunet V, Gorostidi F, et al. Head and neck tumors angiogenesis imaging with (68)Ga-NODAGA-RGD in comparison to (18)F-FDG PET/CT: a pilot study. EJNMMI Res. 2020;10(1):47.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Haubner R, Weber WA, Beer AJ, et al. Noninvasive visualization of the activated alphavbeta3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Med. 2005;2(3):e70.

    PubMed  PubMed Central  Google Scholar 

  60. Mittra ES, Goris ML, Iagaru AH, et al. Pilot pharmacokinetic and dosimetric studies of (18)F-FPPRGD2: a PET radiopharmaceutical agent for imaging α(v)β(3) integrin levels. Radiology. 2011;260(1):182–91.

    PubMed  PubMed Central  Google Scholar 

  61. Lobeek D, Rijpkema M, Terry SYA, et al. Imaging angiogenesis in patients with head and neck squamous cell carcinomas by [(68)Ga]Ga-DOTA-E-[c(RGDfK)](2) PET/CT. Eur J Nucl Med Mol Imaging. 2020. https://doi.org/10.1007/s00259-020-04766-2.

    Article  PubMed  Google Scholar 

  62. Sharma R, Valls PO, Inglese M, et al. [(18)F]fluciclatide PET as a biomarker of response to combination therapy of pazopanib and paclitaxel in platinum-resistant/refractory ovarian cancer. Eur J Nucl Med Mol Imaging. 2020;47(5):1239–51.

    CAS  PubMed  Google Scholar 

  63. Thomas GJ, Lewis MP, Whawell SA, et al. Expression of the alphavbeta6 integrin promotes migration and invasion in squamous carcinoma cells. J Investig Dermatol. 2001;117(1):67–73.

    CAS  PubMed  Google Scholar 

  64. Kimura RH, Wang L, Shen B, et al. Evaluation of integrin αvβ(6) cystine knot PET tracers to detect cancer and idiopathic pulmonary fibrosis. Nat Commun. 2019;10(1):4673.

    PubMed  PubMed Central  Google Scholar 

  65. Hausner SH, Bold RJ, Cheuy LY, et al. Preclinical development and first-in-human imaging of the integrin α(v)β(6) with [(18)F]α(v)β(6)-binding peptide in metastatic carcinoma. Clin Cancer Res. 2019;25(4):1206–15.

    CAS  PubMed  Google Scholar 

  66. Roesch S, Lindner T, Sauter M, et al. Comparison of the RGD motif-containing α(v)β(6) integrin-binding peptides SFLAP3 and SFITGv6 for diagnostic application in HNSCC. J Nucl Med. 2018;59(11):1679–85.

    CAS  PubMed  Google Scholar 

  67. Syed M, Flechsig P, Liermann J, et al. Fibroblast activation protein inhibitor (FAPI) PET for diagnostics and advanced targeted radiotherapy in head and neck cancers. Eur J Nucl Med Mol Imaging. 2020. https://doi.org/10.1007/s00259-020-04859-y.

    Article  PubMed  Google Scholar 

  68. • Giesel FL, Kratochwil C, Lindner T, et al. (68)Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med. 2019;60(3):386–92. This study demonstrates the feasibility of fibroblast activation protein as a target for imaging cancer-associated fibroblasts in a variety of malignancies including head and neck cancers as an alternative to FDG in initial staging with better tumor to background contrast.

  69. Göttgens EL, Ostheimer C, Span PN, et al. HPV, hypoxia and radiation response in head and neck cancer. Br J Radiol. 2019;92(1093):20180047.

    PubMed  Google Scholar 

  70. Wiechec E, Hansson KT, Alexandersson L, et al. Hypoxia mediates differential response to anti-EGFR therapy in HNSCC cells. Int J Mol Sci. 2017;18(5):943.

    PubMed Central  Google Scholar 

  71. Harms JK, Lee TW, Wang T, et al. Impact of tumour hypoxia on evofosfamide sensitivity in head and neck squamous cell carcinoma patient-derived xenograft models. Cells. 2019;8(7):717.

    CAS  PubMed Central  Google Scholar 

  72. Thorwarth D, Welz S, Mönnich D, et al. Prospective evaluation of a tumor control probability model based on dynamic (18)F-FMISO PET for head and neck cancer radiotherapy. J Nucl Med. 2019;60(12):1698–704.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Grassi I, Nanni C, Cicoria G, et al. Usefulness of 64Cu-ATSM in head and neck cancer: a preliminary prospective study. Clin Nucl Med. 2014;39(1):e59–e63.

    PubMed  Google Scholar 

  74. Liu T, Karlsen M, Karlberg AM, et al. Hypoxia imaging and theranostic potential of [(64)Cu][Cu(ATSM)] and ionic Cu(II) salts: a review of current evidence and discussion of the retention mechanisms. EJNMMI Res. 2020;10(1):33.

    PubMed  PubMed Central  Google Scholar 

  75. Zschaeck S, Löck S, Hofheinz F, et al. Individual patient data meta-analysis of FMISO and FAZA hypoxia PET scans from head and neck cancer patients undergoing definitive radio-chemotherapy. Radiother Oncol. 2020;149:189–96.

    CAS  PubMed  Google Scholar 

  76. Bandurska-Luque A, Löck S, Haase R, et al. Correlation between FMISO-PET based hypoxia in the primary tumour and in lymph node metastases in locally advanced HNSCC patients. Clin Transl Radiat Oncol. 2019;15:108–12.

    PubMed  PubMed Central  Google Scholar 

  77. Bandurska-Luque A, Löck S, Haase R, et al. FMISO-PET-based lymph node hypoxia adds to the prognostic value of tumor only hypoxia in HNSCC patients. Radiother Oncol. 2019;130:97–103.

    PubMed  Google Scholar 

  78. Suh YE, Lawler K, Henley-Smith R, et al. Association between hypoxic volume and underlying hypoxia-induced gene expression in oropharyngeal squamous cell carcinoma. Br J Cancer. 2017;116(8):1057–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Welz S, Mönnich D, Pfannenberg C, et al. Prognostic value of dynamic hypoxia PET in head and neck cancer: results from a planned interim analysis of a randomized phase II hypoxia-image guided dose escalation trial. Radiother Oncol. 2017;124(3):526–32.

    PubMed  Google Scholar 

  80. Löck S, Perrin R, Seidlitz A, et al. Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiother Oncol. 2017;124(3):533–40.

    PubMed  Google Scholar 

  81. N.C.C. Network. Head and neck cancers (version 2.2020). N.C.C. Network; 2020. https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf. Accessed 24 June 2020.

  82. Amin MB, Edge SB. AJCC cancer staging manual. New York: Springer; 2017.

    Google Scholar 

  83. Zanoni DK, Patel SG, Shah JP. Changes in the 8th Edition of the American Joint Committee on Cancer (AJCC) staging of head and neck cancer: rationale and implications. Curr Oncol Rep. 2019;21(6):52.

    PubMed  PubMed Central  Google Scholar 

  84. Pillsbury HC. III, and M Clark, A rationale for therapy of the N0 neck. Laryngoscope. 1997;107(10):1294–315.

    PubMed  Google Scholar 

  85. Riviere D, Mancini J, Santini L, et al. Nodal metastases distribution in laryngeal cancer requiring total laryngectomy: Therapeutic implications for the N0 Neck. Eur Ann Otorhinolaryngol Head Neck Dis. 2019;136(3s):S35–S3838.

    CAS  PubMed  Google Scholar 

  86. Lim YC, Koo BS, Lee JS, et al. Distributions of cervical lymph node metastases in oropharyngeal carcinoma: therapeutic implications for the N0 neck. Laryngoscope. 2006;116(7):1148–52.

    PubMed  Google Scholar 

  87. Pou JD, Barton BM, Lawlor CM, et al. Minimum lymph node yield in elective level I–III neck dissection. Laryngoscope. 2017;127(9):2070–3.

    PubMed  Google Scholar 

  88. •• Lowe VJ, Duan F, Subramaniam RM, et al. Multicenter trial of [(18)F]fluorodeoxyglucose positron emission tomography/computed tomography staging of head and neck cancer and negative predictive value and surgical impact in the N0 neck: results from ACRIN 6685. J Clin Oncol. 2019;37(20):1704–12. This is a large prospective nonrandomized multicenter clinical trial validating the clinical value and diagnostic accuracy of FDG PET in initial staging of head and neck squamous cell carcinoma in patients with cT2–4 primary disease.

  89. Kim Y, Roh JL, Kim JS, et al. Chest radiography or chest CT plus head and neck CT versus (18)F-FDG PET/CT for detection of distant metastasis and synchronous cancer in patients with head and neck cancer. Oral Oncol. 2019;88:109–14.

    PubMed  Google Scholar 

  90. de Bree R, Senft A, Coca-Pelaz A, et al. Detection of distant metastases in head and neck cancer: changing landscape. Adv Ther. 2018;35(2):161–72.

    PubMed  Google Scholar 

  91. Rohde M, Nielsen AL, Johansen J, et al. Head-to-head comparison of chest X-ray/head and neck MRI, chest CT/head and neck MRI, and (18)F-FDG PET/CT for detection of distant metastases and synchronous cancer in oral, pharyngeal, and laryngeal cancer. J Nucl Med. 2017;58(12):1919–24.

    CAS  PubMed  Google Scholar 

  92. Golusinski P, Di Maio P, Pehlivan B, et al. Evidence for the approach to the diagnostic evaluation of squamous cell carcinoma occult primary tumors of the head and neck. Oral Oncol. 2019;88:145–52.

    PubMed  Google Scholar 

  93. Cheol Park G, Roh JL, Cho KJ, et al. (18)F-FDG PET/CT vs. human papillomavirus, p16 and Epstein–Barr virus detection in cervical metastatic lymph nodes for identifying primary tumors. Int J Cancer. 2017;140(6):1405–12.

    PubMed  Google Scholar 

  94. Huang Y, Feng M, He Q, et al. Prognostic value of pretreatment 18F-FDG PET–CT for nasopharyngeal carcinoma patients. Medicine (Baltim). 2017;96(17):e6721.

    CAS  Google Scholar 

  95. Chan SC, Chang KP, Fang YD, et al. Tumor heterogeneity measured on F-18 fluorodeoxyglucose positron emission tomography/computed tomography combined with plasma Epstein-Barr Virus load predicts prognosis in patients with primary nasopharyngeal carcinoma. Laryngoscope. 2017;127(1):E22–E28.

    CAS  PubMed  Google Scholar 

  96. Castelli J, Depeursinge A, Devillers A, et al. PET-based prognostic survival model after radiotherapy for head and neck cancer. Eur J Nucl Med Mol Imaging. 2019;46(3):638–49.

    CAS  PubMed  Google Scholar 

  97. Moan JM, Amdal CD, Malinen E, et al. The prognostic role of 18F-fluorodeoxyglucose PET in head and neck cancer depends on HPV status. Radiother Oncol. 2019;140:54–61.

    PubMed  Google Scholar 

  98. Chotchutipan T, Rosen BS, Hawkins PG, et al. Volumetric (18)F-FDG-PET parameters as predictors of locoregional failure in low-risk HPV-related oropharyngeal cancer after definitive chemoradiation therapy. Head Neck. 2019;41(2):366–73.

    PubMed  Google Scholar 

  99. Bonomo P, Merlotti A, Olmetto E, et al. What is the prognostic impact of FDG PET in locally advanced head and neck squamous cell carcinoma treated with concomitant chemo-radiotherapy? A systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2018;45(12):2122–38.

    PubMed  PubMed Central  Google Scholar 

  100. Šedienė S, Kulakienė I, Rudžianskas V, et al. The role of 18-fluoro-2-deoxy-glucose positron emission tomography/computed tomography as response and prognosis predictive factor of concurrent chemoradiotherapy after induction chemotherapy in head and neck squamous cell carcinoma: a prospective study. Medicina (Kaunas). 2018;54(2):31.

    Google Scholar 

  101. Nicolau UR, de Jesus VHF, Lima ENP, et al. Early metabolic 18F-FDG PET/CT response of locally advanced squamous-cell carcinoma of head and neck to induction chemotherapy: a prospective pilot study. PLoS ONE. 2018;13(8):e0200823.

    PubMed  PubMed Central  Google Scholar 

  102. Dos Anjos RF, Dos Anjos DA, Vieira DL, et al. Effectiveness of FDG-PET/CT for evaluating early response to induction chemotherapy in head and neck squamous cell carcinoma: a systematic review. Medicine (Baltim). 2016;95(32):e4450.

    Google Scholar 

  103. Breheret M, Lubgan D, Haderlein M, et al. Single-cycle induction chemotherapy before chemoradiotherapy or surgery in functionally inoperable head and neck squamous cell carcinoma: 10-year results. Eur Arch Otorhinolaryngol. 2020;277(1):245–54.

    PubMed  Google Scholar 

  104. Qian X, Nie X, Wollenberg B, et al. Heterogeneity of head and neck squamous cell carcinoma stem cells. Adv Exp Med Biol. 2019;1139:23–40.

    CAS  PubMed  Google Scholar 

  105. Taghipour M, Sheikhbahaei S, Wray R, et al. FDG PET/CT in patients with head and neck squamous cell carcinoma after primary surgical resection with or without chemoradiation therapy. Am J Roentgenol. 2016;206(5):1093–100.

    Google Scholar 

  106. Leung AS, Rath TJ, Hughes MA, et al. Optimal timing of first posttreatment FDG PET/CT in head and neck squamous cell carcinoma. Head Neck. 2016;38(Suppl 1):E853–E858858.

    PubMed  Google Scholar 

  107. •• Mehanna H, McConkey CC, Rahman JK, et al. PET-NECK: a multicentre randomised Phase III non-inferiority trial comparing a positron emission tomography–computerised tomography-guided watch-and-wait policy with planned neck dissection in the management of locally advanced (N2/N3) nodal metastases in patients with squamous cell head and neck cancer. Health Technol Assess. 2017;21(17):1–122. This large multicenter randomized clinical trial establishes the non-inferiority of active surveillance with FDG PET/CT to planned neck dissection after definitive chemoradiation therapy of patients with advanced head and neck cancers and nodal metastases. The surveillance group experienced considerably fewer surgeries and associated complications and had similar survival to the planned neck dissection group.

  108. Pryor DI, Porceddu SV, Scuffham PA, et al. Economic analysis of FDG-PET-guided management of the neck after primary chemoradiotherapy for node-positive head and neck squamous cell carcinoma. Head Neck. 2013;35(9):1287–94.

    PubMed  Google Scholar 

  109. Helsen N, Van den Wyngaert T, Carp L, et al. Quantification of 18F-fluorodeoxyglucose uptake to detect residual nodal disease in locally advanced head and neck squamous cell carcinoma after chemoradiotherapy: results from the ECLYPS study. Eur J Nucl Med Mol Imaging. 2020;47(5):1075–82.

    CAS  PubMed  Google Scholar 

  110. de Ridder M, Gouw ZAR, Navran A, et al. FDG-PET/CT improves detection of residual disease and reduces the need for examination under anaesthesia in oropharyngeal cancer patients treated with (chemo-)radiation. Eur Arch Otorhinolaryngol. 2019;276(5):1447–555.

    PubMed  Google Scholar 

  111. Driessen JP, Peltenburg B, Philippens MEP, et al. Prospective comparative study of MRI including diffusion-weighted images versus FDG PET–CT for the detection of recurrent head and neck squamous cell carcinomas after (chemo)radiotherapy. Eur J Radiol. 2019;111:62–7.

    PubMed  Google Scholar 

  112. Zhong J, Sundersingh M, Dyker K, et al. Post-treatment FDG PET–CT in head and neck carcinoma: comparative analysis of 4 qualitative interpretative criteria in a large patient cohort. Sci Rep. 2020;10(1):4086.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Marcus C, Ciarallo A, Tahari AK, et al. Head and neck PET/CT: therapy response interpretation criteria (Hopkins Criteria)-interreader reliability, accuracy, and survival outcomes. J Nucl Med. 2014;55(9):1411–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Porceddu SV, Pryor DI, Burmeister E, et al. Results of a prospective study of positron emission tomography-directed management of residual nodal abnormalities in node-positive head and neck cancer after definitive radiotherapy with or without systemic therapy. Head Neck. 2011;33(12):1675–82.

    PubMed  Google Scholar 

  115. Peacock JG, Christensen CT, Banks KP. RESISTing the need to quantify: putting qualitative FDG-PET/CT tumor response assessment criteria into daily practice. Am J Neuroradiol. 2019;40(12):1978–86.

    CAS  PubMed  Google Scholar 

  116. Aiken AH, Rath TJ, Anzai Y, et al. ACR Neck Imaging Reporting and Data Systems (NI-RADS): a White Paper of the ACR NI-RADS Committee. J Am Coll Radiol. 2018;15(8):1097–108.

    PubMed  Google Scholar 

  117. Elsholtz FHJ, Ro SR, Shnayien S, et al. Inter- and intrareader agreement of NI-RADS in the interpretation of surveillance contrast-enhanced CT after treatment of oral cavity and oropharyngeal squamous cell carcinoma. Am J Neuroradiol. 2020;41(5):859–65.

    CAS  PubMed  Google Scholar 

  118. Krieger DA, Hudgins PA, Nayak GK, et al. Initial performance of NI-RADS to predict residual or recurrent head and neck squamous cell carcinoma. Am J Neuroradiol. 2017;38(6):1193–9.

    CAS  PubMed  Google Scholar 

  119. Wangaryattawanich P, Branstetter BF IV, Hughes M, et al. Negative predictive value of NI-RADS category 2 in the first posttreatment FDG-PET/CT in head and neck squamous cell carcinoma. Am J Neuroradiol. 2018;39(10):1884–8.

    CAS  PubMed  Google Scholar 

  120. Hsu D, Chokshi FH, Hudgins PA, et al. Predictive value of first posttreatment imaging using standardized reporting in head and neck cancer. Otolaryngol Head Neck Surg. 2019;161(6):978–85.

    PubMed  Google Scholar 

  121. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58.

    PubMed  PubMed Central  Google Scholar 

  122. Saâda-Bouzid E, Defaucheux C, Karabajakian A, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol. 2017;28(7):1605–11.

    PubMed  Google Scholar 

  123. Aide N, Hicks RJ, Le Tourneau C, et al. FDG PET/CT for assessing tumour response to immunotherapy: report on the EANM symposium on immune modulation and recent review of the literature. Eur J Nucl Med Mol Imaging. 2019;46(1):238–50.

    PubMed  Google Scholar 

  124. Sridharan V, Rahman RM, Huang RY, et al. Radiologic predictors of immune checkpoint inhibitor response in advanced head and neck squamous cell carcinoma. Oral Oncol. 2018;85:29–34.

    PubMed  Google Scholar 

  125. Thelen J, Bhatt AA. Multimodality imaging of paragangliomas of the head and neck. Insights Imaging. 2019;10(1):29.

    PubMed  PubMed Central  Google Scholar 

  126. Helali M, Moreau M, Le Fèvre C, et al. (18)F-FDOPA PET/CT combined with MRI for gross tumor volume delineation in patients with skull base paraganglioma. Cancers (Basel). 2019;11(1):54.

    CAS  Google Scholar 

  127. Heimburger C, Veillon F, Taïeb D, et al. Head-to-head comparison between (18)F-FDOPA PET/CT and MR/CT angiography in clinically recurrent head and neck paragangliomas. Eur J Nucl Med Mol Imaging. 2017;44(6):979–87.

    PubMed  Google Scholar 

  128. Janssen I, Blanchet EM, Adams K, et al. Superiority of [68Ga]-DOTATATE PET/CT to other functional imaging modalities in the localization of SDHB-associated metastatic pheochromocytoma and paraganglioma. Clin Cancer Res. 2015;21(17):3888–955.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Jha A, de Luna K, Balili CA, et al. Clinical, diagnostic, and treatment characteristics of SDHA-related metastatic pheochromocytoma and paraganglioma. Front Oncol. 2019;9:53.

    PubMed  PubMed Central  Google Scholar 

  130. Nascimento C, Borget I, Al Ghuzlan A, et al. Postoperative fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography: an important imaging modality in patients with aggressive histology of differentiated thyroid cancer. Thyroid. 2015;25(4):437–44.

    CAS  PubMed  Google Scholar 

  131. Ozkan E, Soydal C, Araz M, et al. The additive clinical value of 18F-FDG PET/CT in defining the recurrence of disease in patients with differentiated thyroid cancer who have isolated increased antithyroglobulin antibody levels. Clin Nucl Med. 2012;37(8):755–8.

    PubMed  Google Scholar 

  132. Choi SJ, Jung KP, Lee SS, et al. Clinical usefulness of F-18 FDG PET/CT in papillary thyroid cancer with negative radioiodine scan and elevated thyroglobulin level or positive anti-thyroglobulin antibody. Nucl Med Mol Imaging. 2016;50(2):130–6.

    CAS  PubMed  Google Scholar 

  133. Lee J, Nah KY, Kim RM, et al. Effectiveness of [(124)I]-PET/CT and [(18)F]-FDG-PET/CT for localizing recurrence in patients with differentiated thyroid carcinoma. J Korean Med Sci. 2012;27(9):1019–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Verma P, Malhotra G, Agrawal R, et al. Evidence of prostate-specific membrane antigen expression in metastatic differentiated thyroid cancer using 68Ga-PSMA-HBED-CC PET/CT. Clin Nucl Med. 2018;43(8):e265–e268268.

    PubMed  Google Scholar 

  135. de Vries LH, Lodewijk L, Braat A, et al. (68)Ga-PSMA PET/CT in radioactive iodine-refractory differentiated thyroid cancer and first treatment results with (177)Lu-PSMA-617. EJNMMI Res. 2020;10(1):18.

    PubMed  PubMed Central  Google Scholar 

  136. Hoang JK, Oldan JD, Mandel SJ, et al. ACR Appropriateness Criteria(®) thyroid disease. J Am Coll Radiol. 2019;16(5s):S300–S314314.

    PubMed  Google Scholar 

  137. Giovanella L, Treglia G, Iakovou I, et al. EANM practice guideline for PET/CT imaging in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2020;47(1):61–77.

    PubMed  Google Scholar 

  138. Salavati A, Puranik A, Kulkarni HR, et al. Peptide receptor radionuclide therapy (PRRT) of medullary and nonmedullary thyroid cancer using radiolabeled somatostatin analogues. Semin Nucl Med. 2016;46(3):215–24.

    PubMed  Google Scholar 

  139. Seok J, Hyun SJ, Jeong WJ, et al. The difference in the clinical features between carcinoma ex pleomorphic adenoma and pleomorphic adenoma. Ear Nose Throat J. 2019;98(8):504–9.

    PubMed  Google Scholar 

  140. Toriihara A, Nakamura S, Kubota K, et al. Can dual-time-point 18F-FDG PET/CT differentiate malignant salivary gland tumors from benign tumors? Am J Roentgenol. 2013;201(3):639–44.

    Google Scholar 

  141. Seethala RR, Stenman G. Update from the 4th Edition of the World Health Organization Classification of Head and Neck Tumours: tumors of the salivary gland. Head Neck Pathol. 2017;11(1):55–67.

    PubMed  PubMed Central  Google Scholar 

  142. Sood S, McGurk M, Vaz F. Management of salivary gland tumours: United Kingdom National Multidisciplinary Guidelines. J Laryngol Otol. 2016;130(S2):S142–S149149.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Westergaard-Nielsen M, Rohde M, Godballe C, et al. Up-front 18F-FDG PET/CT in suspected salivary gland carcinoma. Ann Nucl Med. 2019;33(8):554–63.

    CAS  PubMed  Google Scholar 

  144. Park MJ, Oh JS, Roh JL, et al. 18F-FDG PET/CT versus contrast-enhanced CT for staging and prognostic prediction in patients with salivary gland carcinomas. Clin Nucl Med. 2017;42(3):e149–e156156.

    PubMed  Google Scholar 

  145. Lee SH, Roh JL, Kim JS, et al. Detection of distant metastasis and prognostic prediction of recurrent salivary gland carcinomas using (18)F-FDG PET/CT. Oral Dis. 2018;24(6):940–7.

    PubMed  Google Scholar 

  146. Cheng NM, Hsieh CE, Liao CT, et al. Prognostic value of tumor heterogeneity and SUVmax of pretreatment 18F-FDG PET/CT for salivary gland carcinoma with high-risk histology. Clin Nucl Med. 2019;44(5):351–8.

    PubMed  Google Scholar 

  147. Ozturk K, Gencturk M, Caicedo-Granados E, et al. Utility of FDG PET/CT in the characterization of sinonasal neoplasms: analysis of standardized uptake value parameters. Am J Roentgenol. 2018;211(6):1354–60.

    Google Scholar 

  148. Felix-Ravelo M, Bey A, Arous F, et al. Relationship between (18)FDG-PET and different types of sinonasal malignancies. Acta Otolaryngol. 2017;137(2):191–5.

    CAS  PubMed  Google Scholar 

  149. Elkhatib AH, Soldatova L, Carrau RL, et al. Role of (18)F-FDG PET/CT differentiating olfactory neuroblastoma from sinonasal undifferentiated carcinoma. Laryngoscope. 2017;127(2):321–4.

    PubMed  Google Scholar 

  150. Ozturk K, Gencturk M, Caicedo-Granados E, et al. Positron emission computed tomography and magnetic resonance imaging features of sinonasal small round blue cell tumors. Neuroradiol J. 2020;33(1):48–56.

    PubMed  Google Scholar 

  151. Broski SM, Hunt CH, Johnson GB, et al. The added value of 18F-FDG PET/CT for evaluation of patients with esthesioneuroblastoma. J Nucl Med. 2012;53(8):1200–6.

    PubMed  Google Scholar 

  152. French CA. The importance of diagnosing NUT midline carcinoma. Head Neck Pathol. 2013;7(1):11–6.

    PubMed  PubMed Central  Google Scholar 

  153. Kawase T, Naka G, Kubota K, et al. NUT midline carcinoma in elderly patients: usefulness of 18F-FDG PET/CT for treatment assessment. Clin Nucl Med. 2015;40(9):764–5.

    PubMed  Google Scholar 

  154. Qaisi M, Eid I. Pediatric head and neck malignancies. Oral Maxillofac Surg Clin N Am. 2016;28(1):11–9.

    Google Scholar 

  155. Sengupta S, Pal R, Saha S, et al. Spectrum of head and neck cancer in children. J Indian Assoc Pediatr Surg. 2009;14(4):200–3.

    PubMed  PubMed Central  Google Scholar 

  156. Marcus KJ, Tishler RB. Head and neck carcinomas across the age spectrum: epidemiology, therapy, and late effects. Semin Radiat Oncol. 2010;20(1):52–7.

    PubMed  Google Scholar 

  157. Kiratli P, Tuncel M, Bar-Sever Z. Nuclear Medicine in Pediatric and Adolescent Tumors. Semin Nucl Med. 2016;46(4):308–23.

    PubMed  Google Scholar 

  158. Cerci JJ, Etchebehere EC, Nadel H, et al. Is true whole-body (18)F-FDG PET/CT required in pediatric lymphoma? An IAEA multicenter prospective study. J Nucl Med. 2019;60(8):1087–93.

    CAS  PubMed  Google Scholar 

  159. Alvi S, Karadaghy O, Manalang M, et al. Clinical manifestations of neuroblastoma with head and neck involvement in children. Int J Pediatr Otorhinolaryngol. 2017;97:157–62.

    PubMed  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Moradi.

Ethics declarations

Conflict of interest

None.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection onNuclear Medicine & PET/CT Imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, F. Positron Emission Tomography and Molecular Imaging of Head and Neck Malignancies. Curr Radiol Rep 8, 21 (2020). https://doi.org/10.1007/s40134-020-00366-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40134-020-00366-y

Keywords

Navigation