Skip to main content
Log in

Numerical simulations of Kuramoto–Sivashinsky equation in reaction-diffusion via Galerkin method

  • Original Research
  • Published:
Mathematical Sciences Aims and scope Submit manuscript

Abstract

Finite element methods have been frequently employed in seeking the numerical solutions of PDEs. In this study, a Galerkin finite element numerical scheme is constructed to explore numerical solutions of the generalized Kuramoto–Sivashinsky (gKS) equation. A quartic trigonometric tension (QTT) B-spline function is adapted as base of the Galerkin technique. The incorporation of B-spline Galerkin in space discretization generates the time-dependent system. Then, the use of Crank–Nicolson time integration algorithm to this system gives the wholly discretized scheme. The efficiency of the method is tested over several initial boundary value problems. In addition, the stability of the computational scheme is analyzed by considering Von Neumann technique. The computational results obtained by the suggested scheme are simulated and compared with the commonly existing numerical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ak, T.: Numerical experiments for long nonlinear internal waves via gardner equation with dual-power law nonlinearity. Int. J. Mod. Phys. C 30(1950066), 1–18 (2019)

    MathSciNet  Google Scholar 

  2. Ak, T., Dhawan, S., Inan, B.: Numerical solutions of the generalized Rosenau–Kawahara–Rlw equation arising in fluid mechanics via B-spline collocation method. Int. J. Mod. Phys. C 29(1850116), 1–10 (2019)

    Google Scholar 

  3. Ak, T., Saha, A., Dhawan, S.: Performance of a hybrid computational scheme on traveling waves and its dynamic transition for Gilson–Pickering equation. Int. J. Mod. Phys. C 30(1950028), 1–10 (2019)

    MathSciNet  Google Scholar 

  4. Alinia, N., Zarebnia, M.: A numerical algorithm based on a new kind of tension b-spline function for solving Burgers–Huxley equation. Numer. Algorit. 82, 1121–1142 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bhatt, H., Chowdhury, A.: A high-order implicit–explicit runge–kutta type scheme for the numerical solution of the Kuramoto–Sivashinsky equation. Int. J. Comput. Math. 1–20 (2020)

  6. Celik, I.: Generalization of gegenbauer wavelet collocation method, to the generalized Kuramoto–Sivashinsky equation. Int. J. Appl. Comput. Math. 4(111), 1–19 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Dag, I., Hepson, O.E.: Hyperbolic-trigonometric tension b-spline galerkin approach for the solution of fisher equation. In: AIP Conference Proceedings, vol. 2334, p. 090004. AIP Publishing LLC (2021)

  8. Dag, I., Hepson, O.E.: Hyperbolic-trigonometric tension b-spline galerkin approach for the solution of rlw equation. In: AIP Conference Proceedings, vol. 2334, p. 090005. AIP Publishing LLC (2021)

  9. Ersoy, O., Dag, I.: The exponential cubic b-spline collocation method for the Kuramoto–Sivashinsky equation. Filomat 30(3), 853–861 (2016)

    Article  MathSciNet  Google Scholar 

  10. Ersoy Hepson, O.: Generation of the trigonometric cubic b-spline collocation solutions for the Kuramoto–Sivashinsky(ks) equation. AIP 1978(470099), 1–5 (2018)

    Google Scholar 

  11. Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  MathSciNet  Google Scholar 

  12. Grimshaw, R., Hooper, A.P.: The non-existence of a certain class of travelling wave solutions of the Kuramoto–Sivashinsky equation. Phys. D 50, 231–238 (1991)

    Article  MathSciNet  Google Scholar 

  13. Haq, S., Bibi, N., Tirmizi, S.I.A., Usman, M.: Meshless method of lines for the numerical solution of generalized Kuramoto–Sivashinsky equation. Appl. Math. Comput. 217, 2404–2413 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Hepson, O.E., Yiğit, G.: Numerical investigations of physical processes for regularized long wave equation. In: International Online Conference on Intelligent Decision Science, pp. 710–724. Springer (2020)

  15. Khater, A.H., Temsah, R.S.: Numerical solutions of the generalized Kuramoto–Sivashinsky equation by chebyshev spectral collocation methods. Comput. Math. Appl. 56, 1465–1472 (2008)

    Article  MathSciNet  Google Scholar 

  16. Kuramoto, Y.: Diffusion-induced chaos in reaction systems. Prog. Theor. Phys. 64, 346–367 (1978)

    Article  Google Scholar 

  17. Kuramoto, Y., Tsuzuki, T.: On the formation of dissipative structures in reaction-diffusion systems reductive perturbation approach. Prog. Theor. Phys. 54(3), 687–699 (1973)

    Article  Google Scholar 

  18. Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55(2), 356–369 (1976)

    Article  Google Scholar 

  19. Lai, H., Ma, C.: Lattice Boltzmann method for the generalized Kuramoto–Sivashinsky equation. Phys. A 388, 1405–1412 (2009)

    Article  MathSciNet  Google Scholar 

  20. Lakestani, M., Dehghan, M.: Numerical solutions of the generalized Kuramoto–Sivashinsky equation using b-spline functions. Appl. Math. Model. 36, 605–617 (2012)

    Article  MathSciNet  Google Scholar 

  21. Larios, A., Yamazaki, K.: On the well-posedness of an anisotropically-reduced two-dimensional Kuramoto–Sivashinsky equation. Phys. D Nonlinear Phenom. 411, 132560 (2020)

    Article  MathSciNet  Google Scholar 

  22. Mittal, R.C., Arora, G.: Quintic b-spline collocation method for numerical solution of the Kuramoto–Sivashinsky equation. Commun. Nonlinear Sci. Numer. Simul. 15, 2798–2808 (2010)

    Article  MathSciNet  Google Scholar 

  23. Mittal, R.C., Dahiya, S.: A quintic b-spline based differential quadrature method for numerical solution of Kuramoto–Sivashinsky equation. Int. J. Nonlinear Sci. Numer. 18(2), 103–114 (2017)

    Article  MathSciNet  Google Scholar 

  24. Porshokouhi, M.G., Ghanbari, B.: Application of he’s variational iteration method for solution of the family of Kuramoto–Sivashinsky equations. J. King Saud Univ. Sci. 23, 407–411 (2011)

    Article  Google Scholar 

  25. Shah, R., Khan, H., Baleanu, D., Kumam, P., Arif, M.: A semi-analytical method to solve family of Kuramoto–Sivashinsky equations. J. Taibah Univ. Sci. 14(1), 402–411 (2020)

    Article  Google Scholar 

  26. Uddin, M., Haq, S., Islam, S.: A mesh-free numerical method for solution of the family of Kuramoto–Sivashinsky equations. Appl. Math. Comput. 56, 1465–1472 (2008)

    Article  Google Scholar 

  27. Yan, X., Chi-Wang, S.: Local discontinuous galerkin methods for the Kuramoto–Sivashinsky equations and the ito-type coupled kdv equations. Comput. Method Appl. M 195, 3430–3447 (2006)

    Article  MathSciNet  Google Scholar 

  28. Yigit, G., Bayram, M.: Polynomial based differential quadrature for numerical solutions of Kuramoto–Sivashinsky equation. Therm. Sci. 23(1), 129–137 (2019)

    Article  Google Scholar 

  29. Zarabnia, M., Parvaz, R.: Septic b-spline collocation method for numerical solution of the Kuramoto–Sivashinsky equation. Int. J. Math. Comput. Phys. Elect. Comput. Eng. 7, 544–548 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Ersoy Hepson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ersoy Hepson, O. Numerical simulations of Kuramoto–Sivashinsky equation in reaction-diffusion via Galerkin method. Math Sci 15, 199–206 (2021). https://doi.org/10.1007/s40096-021-00402-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40096-021-00402-8

Keywords

Navigation