Skip to main content
Log in

Variable refrigerant flow air conditioning system applicant company selection using PROMETHEE method

  • Original Research
  • Published:
International Journal of Energy and Environmental Engineering Aims and scope Submit manuscript

Abstract

Variable refrigerant flow (VRF) air conditioning systems have become highly preferred in the air conditioning sector has enabled many new companies to enter the industries of VRF Air Conditioning Systems manufacturer and applicant. It has become difficult for decision-makers to select the best applicant company among the alternatives. In this article, the applicant company selection model is developed for heat-pump VRF air condition systems to meet the heating and cooling needs of buildings. The operation and structure of the VRF systems and their selection criteria are determined for the applicant company. Using the Preference Ranking Organization METHod for Enrichment of Evaluations (PROMETHEE) method, one of the multi-criteria decision-making methods, an application company selection model has been presented for three different buildings according to the building characteristics and climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Perez-Lombard, L., Ortiz, J., Pout, C.: A review on buildings energy consumption information. Energy Build. 40, 394–398 (2008)

    Article  Google Scholar 

  2. Afroz, Z., Shafiullah, G.M., Urmee, T., Higgins, G.: Modeling techniques used in building HVAC control systems: a review. Renew. Sustain. Energy Rev. 83, 64–84 (2018)

    Article  Google Scholar 

  3. Kim, D., Cox, S.J., Cho, H., Im, P.: Evaluation of energy savings potential of variable refrigerant flow (VRF) from variable air volume (VAV) in the US climate locations. Energy Rep. 3, 85–93 (2017)

    Article  Google Scholar 

  4. Hernandez, A.C., III., Fumo, N.: A review of variable refrigerant flow HVAC system components for residential application. Int. J. Refrig 110, 47–57 (2020)

    Article  Google Scholar 

  5. Goetzler, W.: Variable refrigerant flow systems. Ashrae 4(49), 24 (2007)

    Google Scholar 

  6. Afify, R.: Designing VRF systems. Ashare J. 6(52), 50 (2008)

    Google Scholar 

  7. JRAIRA, Available: https://www.jraia.or.jp/english/World_AC_Demand.pdf. Access: Monday Aug 2021

  8. Byeongmo, S., Beom, Y., Beyeong, H.Y., Soolyeon, C., Kwang, H.L.: Comparative analysis of cooling energy performance between water-cooled. Appl. Therm. Eng. 170, 114992 (2020)

    Article  Google Scholar 

  9. Tolga, R.R., Aynur, N., Yunho, H.: Integration of variable rrefrigerant flow and heat pump desiccant systems for the cooling season. Appl. Therm. Eng. 30, 917–927 (2010)

    Article  Google Scholar 

  10. Türkmen, U.: Energy, exergy and thermodynamic analysis of the VRF system in the case of office building application. Msc Thesis, Gazi University Institute of Science, Ankara, Turkey 2016 (In Turkish)

  11. Alperen, T.: Comparison of variable flow refrigerant (VRF) and fan coil (FCU) systems. Msc Thesis, Marmara University Institute of Science, Istanbul, Turkey, 2020 (In Turkish)

  12. Anıl, A.: Evaluation of variable flow air conditioning system (VRF) in a hotel project. Msc Thesis, Ege University Institute of Science, Izmir, Turkey, 2019 (In Turkish)

  13. Ertuğrul, İ, Özçil, A.: Air conditioner selection with TOPSIS and VIKOR methods in multi criteria decision making. Çankırı Karatekin Univ. J. Fac. Econ. Admin. Sci. 4(1), 267–282 (2014)

    Google Scholar 

  14. Bayeh, C.Z.E., Khaled, A., Brahim, B., Mohammed, Z., Eicker, U.: An original multi-criteria decision-making algorithm for solar panels selection in buildngs. Energy 217, 119396 (2021)

    Article  Google Scholar 

  15. Masood, E., Keshavarz, A.: Combined cooling, heating and power: decision-making, design and optimization. Elsevier (2014)

    Google Scholar 

  16. Polat, G., Bayram, H.G.: Selection of HVAC-AHU system supplier with environmental considerations using fuzzy EDAS method. Int. J. Constr. Manag. 1562–3599, 2331–2327 (2020)

    Google Scholar 

  17. Cuny, M., Lapertot, A., Lin, J., Kadoch, B., Le Métayer, O.: Multi-criteria optimization of an earth-air heat exchanger for different French climates. Renew. Energy 157, 342–352 (2020)

    Article  Google Scholar 

  18. Pitambar, G., Prabhune, C., Pathan, F.: Selection of phase change material for domestic water heating using multi criteria decision approach. Aust. J. Mech. Eng. 24, 1–21 (2020)

    Google Scholar 

  19. Roy, S.A., Syed, M.A., Golam, K., Rafid, E., Saima, A., Tasmiah, H., Hasan, R.: A framework for sustainable supplier selection with transportation criteria. Int. J. Sustain. Eng. 13(2), 77–92 (2020)

    Article  Google Scholar 

  20. Sidhu, J., Singh, S.: Using the improved PROMETHEE for selection of trustworthy cloud database servers. Int. Arab J. Inform. Technol. 2, 194–209 (2019)

    Google Scholar 

  21. Crnjac, M., Aljinovic, A., Gjeldum, N., Mladineo, M.: Two-stage product design selection by using PROMETHEE and Taguchi method: a case study. Adv. Prod. Eng. Manag. 14(1), 39–50 (2019)

    Google Scholar 

  22. Govindan, K., Miłosz, K., Sivakumar, R.: Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega 71, 129–145 (2017)

    Article  Google Scholar 

  23. Dağdeviren, M.: A hybrid multi-criteria decision-making model for personnel selection in manufacturing systems. J. Intell. Manuf. 21, 451–460 (2010)

    Article  Google Scholar 

  24. Yılmaz, B., Dağdeviren, M.: Comparative analysis of promethee and fuzzy promethee methods in equipment selection problem. J. Fac. Eng. Arch. Gazi Univ. 4(25), 811–826 (2010)

    Google Scholar 

  25. Dağdeviren, M., Eraslan, E.: Supplier selection using promethee sequencing method. J. Fac. Eng. Arch. Gazi Univ. 23(1), 69–75 (2008)

    Google Scholar 

  26. Güney, C.: Evaluation of sectors in terms of investors with visual PROMETHEE. TURAN-SAM 9(34), 177–187 (2017). (In Turkish)

    Google Scholar 

  27. Behzadian, M., Kazemzadeh, R.B., Albadvi, A., Aghdasi, M.: PROMETHEE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 200(1), 198–215 (2010)

    Article  MATH  Google Scholar 

  28. Siksnelyte-Butkiene, I., Zavadskas, E.K., Streimikiene, D.: Multi-criteria decision-making (MCDM) for the assessment of renewable energy technologies in a household: a review. Energies 13(5), 1164 (2020)

    Article  Google Scholar 

  29. Kaya, I., Colak, M., Terzi, F.: A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making. Energy Strat. Rev. 24, 207–228 (2019)

    Article  Google Scholar 

  30. Yamankaradeniz, R., Horuz, İ, Coşkun, S., Kaynaklı, Ö., Yamankaradeniz, N.: Air conditioning principles and practices. Dora Publihing, Istanbul (2015)

    Google Scholar 

  31. Keçebaş, A., Daşdemir, A.: Seasonal efficiency and correct air conditioning usage in air conditioners. Tesisat Mühendisliği 150, 13–17 (2015). (In Turkish)

    Google Scholar 

  32. Andaç, Y.: Seasonal efficiency and new energy label in air conditioners. http://www.daikinakademi.com/Media/file/Pdf/Sezonsal-Verimlilik-ve-Klimalarda-Yeni-Enerji-Etiketi.pdf. Access: 31 Aug 2021

  33. Hasan, A.: Recommendations on Management of New Product Development Activities in Air Conditioning. Refrigeration and Air Conditioning Industry Companies, Tesisat Mühendisliği 137, 49–67 (2013)

    Google Scholar 

  34. Kabak, M., Çınar, Y.: Multi-criteria decision making. Nobel (2020)

  35. Brans, J.P., De Smet, Y.: PROMETHEE methods. In: Multiple criteria decision analysis, pp. 187–219. Springer, New York (2016) . (163–195)

    Chapter  Google Scholar 

  36. Visual PROMETHEE. https://www.promethee-gaia.net/academic-edition.html. Access: 31 Aug 2021

  37. Ic, Y.T.: An experimental design approach using TOPSIS method for the selection of computer- integrated manufacturing technologies. Robot. Comput. Integr. Manuf. 28, 245–256 (2012)

    Article  Google Scholar 

  38. Ic, Y.T.: A TOPSIS based design of experiment approach to assess company ranking. Appl. Math. Comput. 227, 630–647 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Tansel İç.

Ethics declarations

Conflict of ınterest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

See Table 5

Table 5 TOPSIS result for scenario 1

Appendix B

See Table 6

Table 6 TOPSIS result for scenario 2

Appendix C

See Table 7

Table 7 TOPSIS result for scenario 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abacı, N., İç, Y.T. Variable refrigerant flow air conditioning system applicant company selection using PROMETHEE method. Int J Energy Environ Eng 13, 1177–1204 (2022). https://doi.org/10.1007/s40095-022-00485-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40095-022-00485-6

Keywords

Navigation