Skip to main content
Log in

Abstract

In this paper, we introduce and analyze a new low-rank multilevel strategy for the solution of random diffusion problems. Using a standard stochastic collocation scheme, we first approximate the infinite dimensional random problem by a deterministic parameter-dependent problem on a high-dimensional parameter domain. Given a hierarchy of finite element discretizations for the spatial approximation, we make use of a multilevel framework in which we consider the differences of the solution on two consecutive finite element levels at the collocation points. We then address the approximation of these high-dimensional differences by adaptive low-rank tensor techniques. This allows to equilibrate the error on all levels by exploiting regularity and additional low-rank structure of the solution. We arrive at an explicit representation in a low-rank tensor format of the approximate solution on the entire parameter domain, which can be used for, e.g., the direct and cheap computation of statistics. Numerical results are provided in order to illustrate the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317–355 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bachmayr, M., Cohen, A., Dahmen, W.: Parametric PDEs: sparse or low-rank approximations? (2016). arXiv:1607.04444

  3. Ballani, J., Grasedyck, L.: Hierarchical tensor approximation of output quantities of parameter-dependent PDEs. SIAM/ASA J. Uncertain. Quantif. 3(1), 393–416 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ballani, J., Grasedyck, L., Kluge, M.: Black box approximation of tensors in hierarchical Tucker format. Linear Algebra Appl. 438(2), 639–657 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ballani, J., Kressner, D.: Reduced basis methods: from low-rank matrices to low-rank tensors. SIAM J. Sci. Comput. 38(4), A2045–A2067 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bangerth, W., Hartmann, R., Kanschat, G.: deal.II – a general purpose object oriented finite element library. ACM Trans. Math. Softw., 33(4):24/1–24/27 (2007)

  7. Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Charrier, J.: Strong and weak error estimates for elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50(1), 216–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, P., Quarteroni, A., Rozza, G.: Comparison between reduced basis and stochastic collocation methods for elliptic problems. J. Sci. Comput. 59(1), 187–216 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, P., Quarteroni, A., Rozza, G.: Multilevel and weighted reduced basis method for stochastic optimal control problems constrained by stokes equations. Numer. Math. 133(1), 67–102 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best \(N\)-term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10, 615–646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dolgov, S., Khoromskij, B.N., Litvinenko, A., Matthies, H.G.: Polynomial chaos expansion of random coefficients and the solution of stochastic partial differential equations in the tensor train format. SIAM/ASA J. Uncertain. Quantif. 3(1), 1109–1135 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Doostan, A., Iaccarino, G.: A least-squares approximation of partial differential equations with high-dimensional random inputs. J. Comput. Phys. 228(12), 4332–4345 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Eigel, M., Pfeffer, M., Schneider, R.: Adaptive stochastic Galerkin FEM with hierarchical tensor representations. Technical report 2015/29, TU Berlin (2015)

  16. Espig, M., Hackbusch, W., Litvinenko, A., Matthies, H.G., Wähnert, P.: Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats. Comput. Math. Appl. 67(4), 818–829 (2014)

  17. Espig, M., Hackbusch, W., Litvinenko, A., Matthies, H.G., Zander, E.: Efficient analysis of high dimensional data in tensor formats. Sparse Grids and Applications. volume 88 of Lecture Notes in Computational Science and Engineering, pp. 31–56. Springer, Berlin-Heidelberg (2013)

  18. Fejér, L.: Mechanische Quadraturen mit positiven Cotesschen Zahlen. Math. Z. 37(1), 287–309 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  19. Giles, M.: Multilevel Monte Carlo path simulation. Oper. Res. 56(3), 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Giles, M., Waterhouse, B.: Multilevel quasi-Monte Carlo path simulation. Radon series. Comp. Appl. Math. 8, 1–18 (2009)

    MATH  Google Scholar 

  21. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31, 2029–2054 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grasedyck, L., Kressner, D., Tobler, C.: A literature survey of low-rank tensor approximation techniques. GAMM-Mitt. 36(1), 53–78 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Griebel, M., Harbrecht, H., Peters, M.: Multilevel quadrature for elliptic parametric partial differential equations on non-nested meshes. arXiv:1509.09058 (2015)

  24. Hackbusch, W.: Tensor Spaces and Numerical Tensor Calculus. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  25. Hackbusch, W., Börm, S.: \({\cal{H}}^2\)-matrix approximation of integral operators by interpolation. Appl. Numer. Math. 43(1–2), 129–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Haji Ali, A.L., Nobile, F., Tamellini, L., Tempone, R.: Multi-index stochastic collocation for random pdes. arXiv preprint arXiv:1508.07467 (2015)

  28. Harbrecht, H., Peters, M., Siebenmorgen, M.: On multilevel quadrature for elliptic stochastic partial differential equations. In: Garcke, J., Griebel, M. (eds.) Sparse Grids and Applications. Lecture Notes in Computational Science and Engineering, vol. 88, pp. 161–179. Springer, Berlin-Heidelberg (2012)

  29. Harbrecht, H., Peters, M., Siebenmorgen, M.: Multilevel accelerated quadrature for PDEs with log-normally distributed diffusion coefficient. SIAM/ASA J. Uncertain. Quantif. 4(1), 520–551 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Heinrich, S.: The multilevel method of dependent tests. In: Advances in stochastic simulation methods (St. Petersburg, 1998), Stat. Ind. Technol., pp. 47–61. Birkhäuser, Boston, (2000)

  31. Heinrich, S.: Multilevel Monte Carlo methods. In: Lecture Notes in Large Scale Scientific Computing, pp. 58–67. Springer, London (2001)

  32. Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups, vol. 31. American Mathematical Society, Providence (1957)

    MATH  Google Scholar 

  33. Hoang, V.A., Schwab, C.: N-term Wiener chaos approximation rate for elliptic PDEs with lognormal Gaussian random inputs. Math. Models Methods Appl. Sci. 4(24), 797–826 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Khoromskij, B.N., Oseledets, I.: Quantics-TT collocation approximation of parameter-dependent and stochastic elliptic PDEs. Comp. Meth. in Applied Math. 10(4), 376–394 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Khoromskij, B.N., Schwab, C.: Tensor-structured Galerkin approximation of parametric and stochastic elliptic PDEs. SIAM J. Sci. Comput. 33(1), 364–385 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kressner, D., Tobler, C.: Low-rank tensor Krylov subspace methods for parameterized linear systems. SIAM J. Matrix Anal. Appl. 32(4), 1288–1316 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kuo, Frances Y., Schwab, Christoph, Sloan, Ian H.: Multi-level quasi-Monte Carlo finite element methods for a class of elliptic PDEs with random coefficients. Found. Comput. Math. 15(2), 411–449 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lee, K., Elman, H.C.: A preconditioned low-rank projection method with a rank-reduction scheme for stochastic partial differential equations. arXiv:1605.05297 (2016)

  39. Matthies, H.G., Zander, E.: Solving stochastic systems with low-rank tensor compression. Linear Algebra Appl. 436(10), 3819–3838 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nouy, A.: Low-rank methods for high-dimensional approximation and model order reduction. arXiv preprint arXiv:1511.01554 (2015)

  41. Nouy, A.: Low-rank tensor methods for model order reduction. arXiv preprint arXiv:1511.01555, 7 (2015)

  42. Oseledets, I.V., Tyrtyshnikov, E.E.: TT-cross approximation for multidimensional arrays. Linear Algebra Appl. 432(1), 70–88 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rivlin, T.J.: The Chebyshev Polynomials. Wiley, Chichester (1974)

    MATH  Google Scholar 

  44. Savostyanov, D.V., Oseledets, I.V.: Fast adaptive interpolation of multi-dimensional arrays in tensor train format. In: Proceedings of 7th International Workshop on Multidimensional Systems (nDS). IEEE (2011)

  45. Schwab, C., Gittelson, C.J.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schwab, C., Todor, R.: Karhunen-Loève approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217, 100–122 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  47. Teckentrup, A.L., Jantsch, P., Webster, C.G., Gunzburger, M.: A multilevel stochastic collocation method for partial differential equations with random input data. SIAM/ASA J. Uncertain. Quantif. 3(1), 1046–1074 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tobler, C.: Low-rank Tensor Methods for Linear Systems and Eigenvalue Problems. PhD thesis, ETH Zürich (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Peters.

Additional information

The first author has been supported by an EPFL fellowship through the European Union’s Seventh Framework Programme under Grant Agreement No. 291771.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballani, J., Kressner, D. & Peters, M.D. Multilevel tensor approximation of PDEs with random data. Stoch PDE: Anal Comp 5, 400–427 (2017). https://doi.org/10.1007/s40072-017-0092-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-017-0092-7

Keywords

Navigation