Skip to main content
Log in

The numerical investigation of ferro–ferrimagnetic half-integer mixed spin ternary alloy: Monte-Carlo approach

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this work, we have investigated in detail the magnetic properties of ferromagnetic–ferrimagnetic ternary alloy (TA) given in the form as \(AB_{p}C_{1-p}\) by means of the Monte-Carlo simulations with Glauber’s kinetics. We assume that this TA consists of two sublattices, one occupied by the A-type atoms of spin-\(\frac{1}{2}\) only and the other one randomly occupied by the B-type (spin-\(\frac{3}{2}\)) or C-type (spin-\(\frac{5}{2}\)) atoms with probability p. The nearest-neighbor (NN) interactions between A and B or C atoms with probability p and the next NN interactions only among A atoms are considered. By exploiting the thermal analysis of the order-parameters and total susceptibility, we have mapped the phase diagrams of the model on the planes of \(\left( {R=|J_{AC}|/J_{AB},kT_{c}/J_{AB}}\right)\), \(\left( p, kT_{c}/J_{AB}\right)\), \((p, kT_\mathrm{{comp}}/J_{AB})\), \(\left( D/J_{AB},kT_{c}/J_{AB}\right)\) and \(\left( D/J_{AB},kT_\mathrm{{comp}}/J_{AB}\right)\), where R and D are the exchange interaction parameter ratio and the crystal field interaction, respectively. These investigations revealed the existence of second-order phase transitions only and up to two compensation temperatures. In addition, the analysis of the hysteresis properties of the TA, single, double or triple hysteresis loops was observed depending on the given system parameters. Our findings present an overall agreement with the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Vilminot, G. André, M. Richard-Plouet, F. Burrée-Vigneron, M. Kurmoo, Inorg. Chem. 45(26), 10938–10946 (2006)

    Article  Google Scholar 

  2. A. Akbarzadeh, M. Samiei, S. Davaran, Nanoscale Res. Lett. 7, 144 (2012)

    Article  ADS  Google Scholar 

  3. J. Namanga, J. Foba, D.T. Ndinteh, D.M. Yufanyi, R.W. Maçedo Krause, J. Nanomater. 2013, 137275 (2013)

    Article  Google Scholar 

  4. A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Int. J. Mol. Sci. 14, 15977–16009 (2013)

    Article  Google Scholar 

  5. K. Hashimoto, S. Ohkoshi, Philos. Trans. R. Soc. Lond. A357, 2977 (1999)

    Article  ADS  Google Scholar 

  6. O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Science 272, 704 (1996)

    Article  ADS  Google Scholar 

  7. S. Ohkoshi, S. Yorozu, O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Appl. Phys. Lett. 70, 1040 (1997)

    Article  ADS  Google Scholar 

  8. S.I. Ohkoshi, Y. Abe, A. Fujishima, K. Hashimoto, Phys. Rev. Lett. 82, 1285 (1999)

    Article  ADS  Google Scholar 

  9. S.I. Ohkoshi, T. Hozumi, M. Utsunomiya, Y. Abe, K. Hashimoto, Physica B 329, 691 (2003)

    Article  ADS  Google Scholar 

  10. S.I. Ohkoshi, T. Hozumi, K. Hashimoto, Phys. Rev. B 64, 132404 (2001)

    Article  ADS  Google Scholar 

  11. Z.D. Vatansever, J. Eng. Sci. 6–2, 94–102 (2018)

    Google Scholar 

  12. D.A. Pejakovic, J.I. Manson, J.S. Miller, A.J. Eipstein, Curr. Appl. Phys. 1, 15 (2001)

    Article  Google Scholar 

  13. P. Bhatt, S. Benerjee, S. Anwar, M.D. Mukadam, S.S. Meena, S.M. Yusuf, A.C.S. Appl, Mater. Interfaces 6, 17579 (2014)

    Article  Google Scholar 

  14. S.S. Kaye, J.R. Long, J. Am. Chem. Soc. 127, 8590 (2005)

    Article  Google Scholar 

  15. S. Ohkoshi, T. Iyoda, A. Fujishima, K. Hashimoto, Phys. Rev. B 56, 11642 (1997)

    Article  ADS  Google Scholar 

  16. M. Vavra, M. Antoňák, Z. Jagličić, M. Mihalik, M. Mihalik, K. Csach, M. Zentková, Acta Phys. Pol. A 118, 998 (2010)

    Article  ADS  Google Scholar 

  17. H. Wada, Y. Maekawa, D. Kawasaki, J. Sci. 1, 179–184 (2016)

    Google Scholar 

  18. K. Hurlbutt, S. Wheeler, I. Capone, M. Pasta, Joule 2, 1950–1960 (2018)

    Article  Google Scholar 

  19. H. Nakotte, M. Shrestha, S. Adak, M. Boergert, V.S. Zapf, N. Harrison, G. King, L.D. Luke, J. Sci. 1, 113–120 (2016)

    Google Scholar 

  20. S. Adak, L.D. Luke, M. Hartl, D. Williams, J. Summerhill, H. Nakotte, J. Sol. Stat. Chem. 184, 2854–2861 (2011)

    Article  ADS  Google Scholar 

  21. J. Dely, A. Bobák, D. Horvath, Acta Phys. Pol. A 113, 461–464 (2008)

    Article  ADS  Google Scholar 

  22. J. Dely, A. Bobák, M. Žukovič, Phys. Lett. A 373, 3197–3200 (2009)

    Article  ADS  Google Scholar 

  23. E. Kış Çam, E. Aydıner, J. Magn. Magn. Mater. 322, 1706–1709 (2010)

    Article  ADS  Google Scholar 

  24. E. Kış Çam, E. Aydıner, IEEE Trans. Mag. 49(9), 5016–5027 (2013)

    Article  Google Scholar 

  25. Y. Yüksel, J. Phys. Chem. Sol. 86, 207 (2015)

    Article  ADS  Google Scholar 

  26. Z.D. Vatansever, Phys. Lett. A 381, 3450 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Bobák, J. Dely, T. Balcerzak, Czechoslov. J. Phys. 54, 523 (2004)

    Article  Google Scholar 

  28. A. Bobák, J. Dely, T. Balcerzak, Acta Phys. Superficierum VIII, 73 (2004)

    Google Scholar 

  29. A. Bobák, F.O. Abubrig, T. Balcerzak, Phys. Rev. B 68, 224405 (2003)

    Article  ADS  Google Scholar 

  30. J. Dely, A. Bobák, J. Magn. Magn. Mater. 305, 464 (2006)

    Article  ADS  Google Scholar 

  31. J. Dely, A. Bobák, D. Horváth, Acta Phys. Pol. A 113, 461 (2008)

    Article  ADS  Google Scholar 

  32. J. Dely, A. Bobák, M. Žukovič, J. Phys. Conf. Ser. 200, 022005 (2010)

    Article  Google Scholar 

  33. R. Houenou, R. Yessoufou, A. Kpadonou, E. Albayrak, Eur. Phys. J. Plus. 136, 1025 (2021)

    Article  Google Scholar 

  34. A. Bobák, O.F. Abubrig, D. Horváth, Physica A 312, 187 (2002)

    Article  ADS  Google Scholar 

  35. H. Hu, Z. Xin, W. Liu, Phys. Lett. A 357, 388 (2006)

    Article  ADS  Google Scholar 

  36. J. Wei, G.H. Yu, L.V. Cheong, Chin. Phys. B 20, 057501 (2011)

    Article  ADS  Google Scholar 

  37. E. Albayrak, J. Magn. Magn. Mater. 323, 992 (2011)

    Article  ADS  Google Scholar 

  38. E. Albayrak, J. Magn. Magn. Mater. 324, 1809 (2012)

    Article  ADS  Google Scholar 

  39. E. Albayrak, Phys. Lett. A 382, 880 (2018)

    Article  ADS  Google Scholar 

  40. G. Mert, J. Magn. Magn. Mater. 363, 224–231 (2014)

    Article  ADS  Google Scholar 

  41. D.L. Strout, D.A. Huckaby, F.Y. Wu, Physica A 173, 60 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  42. F.D. Buzatu, R.P. Lungu, D.A. Huckaby, J. Chem. Phys. 121, 6195 (2004)

    Article  ADS  Google Scholar 

  43. J. Torrico, J. Strečka, O. Rojas, S.M. de Souza, M.L. Lyra, Phys. Rev. E 101, 032104 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  44. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2021)

    Book  MATH  Google Scholar 

  45. M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University Press, Oxford, 2021)

    MATH  Google Scholar 

  46. R.J. Glauber, J. Math. Phys. 4, 294 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  47. E. Albayrak, M. Karimou, Chin. J. Phys. 55, 1361 (2017)

    Article  Google Scholar 

  48. E. Albayrak, F.S. Özcan, J. Supercond. Nov. Magn. 33, 2179 (2020)

    Article  Google Scholar 

  49. E. Albayrak, A. AlÇı, Physica A 345, 48 (2005)

    ADS  Google Scholar 

  50. E. Albayrak, Physica B 494, 91 (2016)

    Article  ADS  Google Scholar 

  51. A. Yigit, E. Albayrak, J. Magn. Magn. Mater. 329, 125 (2013)

    Article  ADS  Google Scholar 

  52. M. Žukovič, A. Bobàk, J. Magn. Magn. Mater. 322, 2868 (2010)

    Article  ADS  Google Scholar 

  53. N. De La Espriella, C.A. Mercado, G.M. Buendía, J. Magn. Magn. Mater. 417, 30 (2016)

    Article  ADS  Google Scholar 

  54. S.M. Yusuf, A. Kumar, J.V. Yakhmi, Appl. Phys. Lett. 95, 182506 (2009)

    Article  ADS  Google Scholar 

  55. W. Jiang, X.-X. Li, L.-M. Liu, J.-N. Chen, F. Zhang, J. Magn. Magn. Mater. 353, 90 (2014)

    Article  ADS  Google Scholar 

  56. B. Boughazi, M. Boughrara, M. Kerouad, J. Magn. Magn. Mater. 363, 26 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The numerical calculations reported in this paper have been performed on the clusters and supercomputers of the CEA-SMIA project of the World Bank at the Institute of Mathematics and Physical Sciences (IMSP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Albayrak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houenou, R., Yessoufou, R., Kpadonou, A. et al. The numerical investigation of ferro–ferrimagnetic half-integer mixed spin ternary alloy: Monte-Carlo approach. J. Korean Phys. Soc. 81, 247–257 (2022). https://doi.org/10.1007/s40042-022-00518-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00518-7

Keywords

Navigation