Skip to main content

Advertisement

Log in

Bone Tissue Regeneration: Rapid Prototyping Technology in Scaffold Design

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

The systematic review refers to the advancement of Rapid Prototyped facilitated scaffolding for regeneration of tissue from the bone. Bone tissue is a mineralized tissue consisting of cortical bones and cancellous bones with two types of hard tissue structure. The bone's dense outer shell, often referred to as the compact bone, it makes up nearly 80% of the cortical bone's skeletal mass, While the cancellous part shares the remaining 20%. Many different forms of cells & substances are participating in the bone remodeling mechanism. Bone remodeling is a highly intricate mechanism in which osteocytes, osteoblasts, and osteoclasts work together to restore old bone with new bone. Osteoclasts are in charge of ageing bone resorption, while osteoblasts are in charge of new bone production. Osteocytes serve as mechanosensors and coordinators during bone remodeling. When used in combination with traditional methods, gas foaming, particulate leaching, fiber bonding, phase separation, lamination of membranes, melting, solvent casting, and freeze drying have been used to manufacture tissue-engineered structures. Although these scaffold manufacturing techniques do not help designers optimize internal architecture that could lead to the development of biological processes and tissues, they do have other benefits. In Rapid Prototyping (RP), complicated and convoluted structures can be successfully produced. Using “RP” in bone scaffold generation results in enhanced strength, in-vitro, and in-vivo cell culture, helps in increasing the capacity for patient-specific bone scaffolds design. This study evaluated the advantages of RP/imaging/CAD/CAM in making scaffolds for bone tissue reconstruction, and it is beneficial to those patients who were otherwise unable to be treated because of the conventional methods. The study explores the possible effects of RP on organ transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ALP:

Alkaline phosphatase

ADMSCs:

Adipose tissue-derived mesenchymal stem cells

BG:

Bioactive glass

bFGF:

Basic fibroblast growth factor

3T3:

Fibroblasts cells

BMP-2:

Bone morphogenic protein-2

BMSCs:

Bone marrow stromal cells

BSA:

Bovine serum albumin

CPC:

Calcium phosphate cement

CSH:

Calcium phosphate cement

CT:

Computed tomography

dECM:

Decellularized extracellular matrix

DMSO:

Dimethyl sulfoxide

DNA:

Deoxyribonucleic acid

EBM:

Electron beam melting

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

EPCs:

Endothelial progenitor cells

FHAp:

Fluorhydroxyaptite

FDM:

Fused deposition modelling

GF:

Growth factor

GO:

Graphene oxide

HA:

Hyaluronic acid

HAp:

Hydroxyapatite

hADSCs:

Human adipose drived stem cells

hAVICs:

Human aortic valvular interstitial cells

hBMSCs:

Human bone marrow derived stem cells

hDFCs:

Human dental follicle cells

hEKCs:

Human embryonic kidney cells

hFOBCs:

Human fetal osteoblasts cells

hNDFs:

Human neonatal dermal fibroblasts

hTMSCs:

Human inferior turbinate tissue derived mesenchymal stromal cells

LBM:

Laser beam melting

MBG:

Mesoporous bioactive glass

MC3T3-E1:

Osteoblast precursor cell line

MG-63:

Human osteosarcoma cell line

MRI:

Magnetic resonance imagining

MSC:

Mesenchymal stem cells

MWCNTs:

Multi-wall carbon nanotubes

NHEKs:

Normal human epidermal keratinocytes

oMSCs:

Ovine mesenchymal stem cells

PAA:

Poly(acrylic acid)

PCL:

Poly(caprolactone)

PEG:

Poly(ethylene oxide)

PEI:

Polyethylenelmine

PEO:

Poly(ethylene oxide)

PES:

Polyethersulphone

PET:

Polyethylene terephthalate

PGA:

Poly(glycolic acid)

PGF:

Platelet derived growth factor

PHB:

Polyhydroxybutyrate

PLC:

Poly(L-lactide caprolactone)

PLGA:

Poly-lactic-glycolic acid

PLA:

Poly lactic acid

PMMA:

Poly(methyl methacrylate)

PP:

Polypropylene

PU:

Polyurethane

PVA:

Polyvinyl alcohol

PVAc:

Polyvinyl acetate

rBMSC:

Rat bone mesenchymal stem cells

rCCs:

Rabbit corneal cells

rGO:

Reduced graphene oxide

RNA:

Ribonucleic acid

SDSCs:

Synovium derived stem cells

SiHAp:

Silicate containing hydroxyapatite

SLA:

Stereolithography

SLS:

Selective laser sintering

TPU:

Thermoplastic polyurethane

VEGF:

Vascular endothelial growth factor

References

  1. S. Bose, S. Vahabzadeh, A. Bandyopadhyay, Bone tissue engineering using 3D printing. Mater. Today 16(12), 496–504 (2013). https://doi.org/10.1016/j.mattod.2013.11.017

    Article  Google Scholar 

  2. J. Wolff et al., Biology of bone tissue: structure, function, and factors that influence bone cells. Tissue Eng. 7(6), 679–689 (2015). https://doi.org/10.1302/2046-3758.73.BJR-2017-0270.R1

    Article  Google Scholar 

  3. M. Ansari, Bone tissue regeneration: biology, strategies and interface studies. Prog. Biomater. 8(4), 223–237 (2019). https://doi.org/10.1007/s40204-019-00125-z

    Article  Google Scholar 

  4. J. Wolff et al., Design and 3D printing of scaffolds and tissues. J. R. Soc. Interface 7(1), 1832–1839 (2003). https://doi.org/10.1016/j.tibtech.2004.05.005

    Article  Google Scholar 

  5. S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7(6), 679–689 (2001). https://doi.org/10.1089/107632701753337645

    Article  Google Scholar 

  6. J. Wolff et al., The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 7(6), 679–689 (2015). https://doi.org/10.1302/2046-3758.73.BJR-2017-0270.R1

    Article  Google Scholar 

  7. J. Wolff et al., Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. Tissue Eng. 7(6), 679–689 (2018). https://doi.org/10.1302/2046-3758.73.BJR-2017-0270.R1

    Article  Google Scholar 

  8. H.T. Halonen, T.O. Ihalainen, L. Hyväri, S. Miettinen, J.A.K. Hyttinen, Cell adhesion and culture medium dependent changes in the high frequency mechanical vibration induced proliferation, osteogenesis, and intracellular organization of human adipose stem cells. J Mech Behav Biomed Mater (2020). https://doi.org/10.1016/j.jmbbm.2019.103419

    Article  Google Scholar 

  9. R. Landers, A. Pfister, U. Hübner, H. John, R. Schmelzeisen, R. Mülhaupt, Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J. Mater. Sci. 37(15), 3107–3116 (2002). https://doi.org/10.1023/A:1016189724389

    Article  Google Scholar 

  10. P.S. Sapkal, S. Jaiswal, A.M. Kuthe, Rapid prototyping assisted scaffold fabrication for bone tissue regeneration. J. Mater. Sci. Res. 5(4), 79 (2016). https://doi.org/10.5539/jmsr.v5n4p79

    Article  Google Scholar 

  11. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng (2018). https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  Google Scholar 

  12. B.K. Gu, D.J. Choi, S.J. Park, M.S. Kim, C.M. Kang, C.H. Kim, 3-Dimensional bioprinting for tissue engineering applications. Biomater. Res. 20(1), 1–8 (2016). https://doi.org/10.1186/s40824-016-0058-2

    Article  Google Scholar 

  13. R. Landers et al., Bio-rapid-prototyping of tissue engineering scaffolds and the process-induced cell damage. Engineering 59(1), 3635–3640 (2018). https://doi.org/10.2174/1874070701812010241

    Article  Google Scholar 

  14. N. Sultana, Mechanical and biological properties of scaffold materials (Elsevier Ltd, Armsterdam, 2018)

    Book  Google Scholar 

  15. T.T. Tran, Z.A. Hamid, K.Y. Cheong, A review of mechanical properties of scaffold in tissue engineering: aloe vera composites. J Phys Conf Ser (2018). https://doi.org/10.1088/1742-6596/1082/1/012080

    Article  Google Scholar 

  16. G. Turnbull et al., 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 3(3), 278–314 (2018). https://doi.org/10.1016/j.bioactmat.2017.10.001

    Article  Google Scholar 

  17. K.F. Leong, C.M. Cheah, C.K. Chua, Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13), 2363–2378 (2003). https://doi.org/10.1016/S0142-9612(03)00030-9

    Article  Google Scholar 

  18. D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage. Biomater. Silver Jubil. Compend. 21, 175–189 (2000). https://doi.org/10.1016/B978-008045154-1.50021-6

    Article  Google Scholar 

  19. B. Thavornyutikarn, N. Chantarapanich, K. Sitthiseripratip, G.A. Thouas, Q. Chen, Bone tissue engineering scaffolding: computer-aided scaffolding techniques. Prog Biomater 3(2–4), 61 (2014)

    Article  Google Scholar 

  20. S.W. Suh et al., Effect of different particles on cell proliferation in polymer scaffolds using a solvent-casting and particulate leaching technique. ASAIO J. 48(5), 460–464 (2002). https://doi.org/10.1097/00002480-200209000-00003

    Article  Google Scholar 

  21. Q. Lv, Q.L. Feng, Preparation of 3-D regenerated fibroin scaffolds with freeze drying method and freeze drying/foaming technique. J. Mater. Sci. Mater. Med. 17(12), 1349–1356 (2006). https://doi.org/10.1007/s10856-006-0610-z

    Article  Google Scholar 

  22. K.W. Lee, S. Wang, B.C. Fox, E.L. Ritman, M.J. Yaszemski, L. Lu, Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromol 8(4), 1077–1084 (2007). https://doi.org/10.1021/bm060834v

    Article  Google Scholar 

  23. S.A. Poursamar, J. Hatami, A.N. Lehner, C.L. Da Silva, F.C. Ferreira, A.P.M. Antunes, Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment. Mater. Sci. Eng. C 48, 63–70 (2015). https://doi.org/10.1016/j.msec.2014.10.074

    Article  Google Scholar 

  24. S. Lohfeld, M.A. Tyndyk, S. Cahill, N. Flaherty, V. Barron, P.E. McHugh, A method to fabricate small features on scaffolds for tissue engineering via selective laser sintering. J. Biomed. Sci. Eng. 3(02), 138–147 (2010). https://doi.org/10.4236/jbise.2010.32019

    Article  Google Scholar 

  25. A. Chládová, J. Wiener, J.M. Luthuli, V. Zajícová, Dyeing of glass fibres by the sol gel method. Autex Res. J. 11(1), 18–23 (2011)

    Google Scholar 

  26. M. Javaid, A. Haleem, Additive manufacturing applications in medical cases: a literature based review. Alexandria J. Med. 54(4), 411–422 (2018). https://doi.org/10.1016/j.ajme.2017.09.003

    Article  Google Scholar 

  27. Ó. Libardo et al., An algorithm to optimize the micro-geometrical dimensions of scaffolds with spherical pores. Materials. 13(18), 4062 (2020)

    Article  Google Scholar 

  28. M. Bahraminasab, Challenges on optimization of 3D - printed bone scaffolds. Biomed. Eng. Online (2020). https://doi.org/10.1186/s12938-020-00810-2

    Article  Google Scholar 

  29. S. Karuppudaiyan, D.K.J. Singh, Design of scaffold with controlled internal architecture using Fused Deposition Modeling (FDM). IJEAT 9(1), 2764–2768 (2016)

    Article  Google Scholar 

  30. A. Baliga and S. Borkar, “A Review of the 3D Designing of Scaffolds for Tissue Engineering with a Focus on Keratin Protein,” no. September, 2016, doi: https://doi.org/10.20944/preprints201609.0091.v1.

  31. M.H. Jalil, M. Todo, Development and characterization of gear shape porous scaffolds using 3D printing technology. IJBBB 7(2), 74–83 (2017)

    Article  Google Scholar 

  32. J. An, J.E.M. Teoh, R. Suntornnond, C.K. Chua, Design and 3D printing of scaffolds and tissues. Engineering 1(2), 261–268 (2015). https://doi.org/10.15302/J-ENG-2015061

    Article  Google Scholar 

  33. S. Mohanty et al., Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Mater. Sci. Eng. C 61, 180–189 (2016). https://doi.org/10.1016/j.msec.2015.12.032

    Article  Google Scholar 

  34. X. Du, Y. Zhu, 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. J Mater Chem B (2018). https://doi.org/10.1039/c8tb00677f

    Article  Google Scholar 

  35. H. Seitz, W. Rieder, S. Irsen, B. Leukers, C. Tille, Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res (2005). https://doi.org/10.1002/jbm.b.30291

    Article  Google Scholar 

  36. F. Curti et al., “Printing Using Wollastonite – Gelatin Inks,” pp. 8–11

  37. W.Y. Yeong, C.K. Chua, K.F. Leong, M. Chandrasekaran, Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22(12), 643–652 (2004). https://doi.org/10.1016/j.tibtech.2004.10.004

    Article  Google Scholar 

  38. S. Yang, K.F. Leong, Z. Du, C.K. Chua, The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8(1), 1–11 (2002). https://doi.org/10.1089/107632702753503009

    Article  Google Scholar 

  39. L. Moroni, J.R. De Wijn, C.A. Van Blitterswijk, 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials (2006). https://doi.org/10.1016/j.biomaterials.2005.07.023

    Article  Google Scholar 

  40. M. T. Arafat, M. M. Savalani, and I. Gibson, “Improving the mechanical properties in tissue engineered scaffolds,” pp. 6–9, 2016

  41. Z. Fang, B. Starly, W. Sun, Computer-aided characterization for effective mechanical properties of porous tissue scaffolds. Comput-Aid Design (2005). https://doi.org/10.1016/j.cad.2004.04.002

    Article  Google Scholar 

  42. M. Schumacher, U. Deisinger, R. Detsch, G. Ziegler, Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes : influence of phase composition, macroporosity and pore geometry on mechanical properties. J Mater Sci Mater Med (2010). https://doi.org/10.1007/s10856-010-4166-6

    Article  Google Scholar 

  43. P.H. Warnke et al., Rapid prototyping : porous titanium alloy scaffolds roduced by selective laser melting for bone tissue engineering. Tissue Eng Part C: Meth 15(2), 115–124 (2009)

    Article  Google Scholar 

  44. P. Taylor, M. E. Hoque, D. W. Hutmacher, W. Feng, S. Li, and M. Huang, “Journal of Biomaterials Science , Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering,” no. November 2014, pp. 37–41, 2012, doi: https://doi.org/10.1163/156856205774576709.

  45. Z. Duan et al., A three-dimensional model of the yeast genome. Nature 465(7296), 363–367 (2010). https://doi.org/10.1038/nature08973

    Article  Google Scholar 

  46. S. Naghieh, M.R. KaramoozRavari, M. Badrossamay, E. Foroozmehr, M. Kadkhodaei, Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: the effect of layer penetration and post-heating. J Mech Behav Biomed Mater (2016). https://doi.org/10.1016/j.jmbbm.2016.01.031

    Article  Google Scholar 

  47. X. Chen, Z. Wang, N. Duan, G. Zhu, E.M. Schwarz, C. Xie, Osteoblast–osteoclast interactions. Connect. Tissue Res. 59(2), 99–107 (2018). https://doi.org/10.1080/03008207.2017.1290085

    Article  Google Scholar 

  48. S. Park, G. Kim, Y. Chul, 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. J Mater Sci: Mater Med (2009). https://doi.org/10.1007/s10856-008-3573-4

    Article  Google Scholar 

  49. L. Liu, Z. Xiong, Y. Yan, Y. Hu, R. Zhang, and S. Wang, “Porous morphology , porosity , mechanical properties of poly (a -hydroxy acid)– tricalcium phosphate composite scaffolds fabricated by low-temperature deposition,” 2007, doi: https://doi.org/10.1002/jbm.a.

  50. J.M. Williams et al., Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials (2005). https://doi.org/10.1016/j.biomaterials.2004.11.057

    Article  Google Scholar 

  51. M. Domingos, A. Gloria, L. Ambrosio, Effect of process parameters on the morphological and mechanical properties of 3D Bioextruded poly (1 -caprolactone) scaffolds. Rapid Prototyp J (2012). https://doi.org/10.1108/13552541211193502

    Article  Google Scholar 

  52. S. Heo et al., Fabrication and characterization of novel nano- and micro-HA / PCL composite scaffolds using a modified rapid prototyping process. J Biomed Mater Res (2008). https://doi.org/10.1002/jbm.a.31726

    Article  Google Scholar 

  53. M.V. Cabañas, J.L. Paris, D. Lozano, Fabrication of novel Si-doped Hydroxyapatite / Gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. ACTA Biomater (2014). https://doi.org/10.1016/j.actbio.2014.12.021

    Article  Google Scholar 

  54. H. Yun, S. Kim, E. Kyun, Bioactive glass – poly (ε -caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks. Mater. Sci. Eng. C 31(2), 198–205 (2011). https://doi.org/10.1016/j.msec.2010.08.020

    Article  Google Scholar 

  55. N. Sudarmadji, J.Y. Tan, K.F. Leong, C.K. Chua, Y.T. Loh, Acta Biomaterialia Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater. 7(2), 530–537 (2011). https://doi.org/10.1016/j.actbio.2010.09.024

    Article  Google Scholar 

  56. N. W. Pensa et al., “3D printed mesh reinforcements enhance the mechanical properties of electrospun scaffolds,” pp. 1–7, 2019

  57. G. Kim, J. Son, S. Park, and W. Kim, “Hybrid Process for Fabricating 3D Hierarchical Scaffolds Combining Rapid Prototyping and Electrospinning,” pp. 1577–1581, 2008, doi: https://doi.org/10.1002/marc.200800277.

  58. G.V. Salmoria, P. Klauss, R.A. Paggi, L.A. Kanis, A. Lago, Structure and mechanical properties of cellulose based scaffolds fabricated by selective laser sintering. Polym. Test. 28(6), 648–652 (2009). https://doi.org/10.1016/j.polymertesting.2009.05.008

    Article  Google Scholar 

  59. N. Sahai and R. P. Tewari, “Characterization o f e ffective m echanical s trength o f c hitosan p orous t issue s caffolds using,” vol. 2, no. 1, pp. 21–28, 2015.

  60. L. Lin, A. Tong, H. Zhang, Q. Hu, and M. Fang, “The Mechanical Properties of Bone Tissue Engineering Scaffold Fabricating Via Selective Laser Sintering,” pp. 146–152, 2007.

  61. K.C. Ang, K.F. Leong, C.K. Chua, fabricated porous structures investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures. Rapid Prototyp J (2006). https://doi.org/10.1108/13552540610652447

    Article  Google Scholar 

  62. P. Taylor et al., “Virtual and Physical Prototyping Mechanical and in vitro evaluations of composite PLDLLA / TCP scaffolds for bone engineering Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineering,” no. November 2014, pp. 37–41, 2008, doi: https://doi.org/10.1080/17452750802551298.

  63. Q. Liu, M.C. Leu, S.M. Schmitt, Rapid prototyping in dentistry: technology and application. Int. J. Adv. Manuf. Technol. 29(3–4), 317–335 (2006). https://doi.org/10.1007/s00170-005-2523-2

    Article  Google Scholar 

  64. M. Askari, M. AfzaliNaniz, M. Kouhi, A. Saberi, A. Zolfagharian, M. Bodaghi, Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci. (2021). https://doi.org/10.1039/d0bm00973c

    Article  Google Scholar 

  65. M.A. Skylar-Scott et al., Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. (2019). https://doi.org/10.1126/sciadv.aaw2459

    Article  Google Scholar 

  66. M.B. Mawale, A.M. Kuthe, S.W. Dahake, Additive layered manufacturing: State-of-the-art applications in product innovation. Concurr. Eng. Res. Appl. 24(1), 94–102 (2016). https://doi.org/10.1177/1063293X15613111

    Article  Google Scholar 

  67. S. Ji, M. Guvendiren, 3D printedwavy scaffolds enhance mesenchymal stem cell osteogenesis. Micromachines (2020). https://doi.org/10.3390/mi11010031

    Article  Google Scholar 

  68. M. Rezai, F. Fahimipour, E. Dashtimoghadam, H. Nokhbatolfoghahaei, L. Tayebi, A. Khojasteh, Bioprinting Osteogenic differentiation of adipose-derived mesenchymal stem cells using 3D-Printed PDLLA / β -TCP nanocomposite scaffolds. Bioprinting (2021). https://doi.org/10.1016/j.bprint.2020.e00117

    Article  Google Scholar 

  69. E. De Giglio et al., Multi-compartment scaffold fabricated via 3D-printing as in vitro co-culture osteogenic model. Sci Rep (2018). https://doi.org/10.1038/s41598-018-33472-1

    Article  Google Scholar 

  70. H.A.M. Abu et al., strong 3D bioprinted scaffolds for bone repair. J Controll Release (2020). https://doi.org/10.1016/j.jconrel.2020.06.035

    Article  Google Scholar 

  71. H. Kim, C. Bae, Y. Kook, W. Koh, K. Lee, M.H. Park, Mesenchymal stem cell 3D encapsulation technologies for biomimetic microenvironment in tissue regeneration. Stem Cell Res Ther (2019). https://doi.org/10.1186/s13287-018-1130-8

    Article  Google Scholar 

  72. S. Cells et al., The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal. Tissue Eng Part A (2015). https://doi.org/10.1089/ten.tea.2014.0231

    Article  Google Scholar 

  73. N. Carolina, “F et al. and N EONATAL S TEM C ELLS Bioprinted Amniotic Fluid-Derived Stem Cells Accelerate Healing of Large Skin Wounds,” pp. 792–802, 2012.

  74. D. Filipa, D. Campos, A. Blaeser, K. Buellesbach, K.S. Sen, Bioprinting organotypic hydrogels with improved mesenchymal stem cell remodeling and mineralization properties for bone tissue engineering. Adv Healthc Mater (2016). https://doi.org/10.1002/adhm.201501033

    Article  Google Scholar 

  75. M. Du, Q. Meng, C. Zhang, and W. Heran, “3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD- BMP2-collagen microfibers My IOPscience 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers This content has been downloaded from IOPscien,” no. December, 2015, doi: https://doi.org/10.1088/1758-5090/7/4/044104

  76. R. Levato, J. Visser, J.A. Planell, E. Engel, Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication (2014). https://doi.org/10.1088/1758-5082/6/3/035020

    Article  Google Scholar 

  77. P. Apelgren et al., Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo. PLoS ONE (2017). https://doi.org/10.1371/journal.pone.0189428

    Article  Google Scholar 

  78. B.S. Kim, Y.W. Kwon, J. Kong, G.T. Park, G. Gao, B.S. Kim, 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials (2018). https://doi.org/10.1016/j.biomaterials.2018.03.040

    Article  Google Scholar 

  79. R. Gaebel et al., Biomaterials patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32(35), 9218–9230 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.071

    Article  Google Scholar 

  80. S.A. Grafts et al., Laser printing of stem cells for biofabrication. Tissue Eng Part C Meth (2011). https://doi.org/10.1089/ten.tec.2010.0359

    Article  Google Scholar 

  81. M. Sladkova, G.M. De Peppo, Bioreactor systems for human bone tissue engineering. Processes (2014). https://doi.org/10.3390/pr2020494

    Article  Google Scholar 

  82. J. Rauh, F. Milan, K.P. Günther, M. Stiehler, Bioreactor systems for bone tissue engineering. Tissue Eng. - Part B Rev. 17(4), 263–280 (2011). https://doi.org/10.1089/ten.teb.2010.0612

    Article  Google Scholar 

  83. C.C. Liao, H.Y. Wang, S.H. Chuang, M.L. Shih, C.C. Liu, Enhancing knowledge management for R&D innovation and firm performance: an integrative view. Afr J. Bus. Manag. 4(14), 3026–3038 (2010)

    Google Scholar 

  84. A.J. El Haj, S.H. Cartmell, Bioreactors for bone tissue engineering. Proc. Inst. Mech. Eng. Part H J. Eng. Med. (2010). https://doi.org/10.1243/09544119JEIM802

    Article  Google Scholar 

  85. M. Nishi, R. Matsumoto, J. Dong, T. Uemura, Engineered bone tissue associated with vascularization utilizing a rotating wall vessel bioreactor. J Biomed Mater Res Part A (2013). https://doi.org/10.1002/jbm.a.34340

    Article  Google Scholar 

  86. A. KoçDemir, A.E. Elçin, Y.M. Elçin, Osteogenic differentiation of encapsulated rat mesenchymal stem cells inside a rotating microgravity bioreactor: in vitro and in vivo evaluation. Cytotechnology (2018). https://doi.org/10.1007/s10616-018-0230-8

    Article  Google Scholar 

  87. B. Carpentier, P. Layrolle, C. Legallais, Bioreactors for bone tissue engineering. Int. J. Artif. Organs 34(3), 259–270 (2011). https://doi.org/10.5301/IJAO.2011.6333

    Article  Google Scholar 

  88. F. Yasmin, X. Chen, Role of bioreactors in regeneration of articular cartilage. Sens Mater. 28(10), 1129–1140 (2016)

    Google Scholar 

  89. P. Godara, C.D. Mcfarland, R.E. Nordon, Design of bioreactors for mesenchymal stem cell tissue engineering. J Chem Tech Biotech: Int Res Process Environ, Clean Tech (2008). https://doi.org/10.1002/jctb

    Article  Google Scholar 

  90. A. Nazempour, B.J. Van Wie, A flow perfusion bioreactor with controlled mechanical stimulation: application in cartilage tissue engineering and beyond. J Stem Cell Ther Transplant 2, 15–34 (2018)

    Google Scholar 

  91. D. Gaspar, D.A. Gaspar, V. Gomide, F.J. Monteiro, The role of perfusion bioreactors in bone tissue engineering. Biomatter (2014). https://doi.org/10.4161/biom.22170

    Article  Google Scholar 

  92. M. Pleasant, I. Bone, L. Nail, Review mechanistic role of perfusion culture on bone regeneration. J Biosci (2019). https://doi.org/10.1007/s12038-018-9827-5

    Article  Google Scholar 

  93. J. Salgado, O.P. Coutinho, R.L. Reis, Bone tissue engineering: state of the art and future trends. Macromol Biosci (2004). https://doi.org/10.1002/mabi.200400026

    Article  Google Scholar 

  94. A. Eltom, G. Zhong, A. Muhammad, Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv Mater Sci Eng (2019). https://doi.org/10.1155/2019/3429527

    Article  Google Scholar 

  95. J.A. Mcgovern, M. Griffin, D.W. Hutmacher, Animal models for bone tissue engineering and modelling disease. Diseas Mod Mechan (2018). https://doi.org/10.1242/dmm.033084

    Article  Google Scholar 

  96. K.C.R. Kolan, Y. Huang, J.A. Semon, M.C. Leu, “3D-printed biomimetic bioactive glass scaffolds for bone regeneration in rat calvarial defects. Int J Bioprint (2020). https://doi.org/10.18063/ijb.v6i2.274

    Article  Google Scholar 

  97. P. Fomby et al., Stem cells and cell therapies in lung biology and diseases: conference report. Ann. Am. Thorac. Soc. 12(3), 181–204 (2010). https://doi.org/10.1002/term

    Article  Google Scholar 

  98. P. Korn et al., 3D printing of bone grafts for cleft alveolar osteoplasty–In vivo Evaluation in a Preclinical Model. Front Bioeng Biotechnol (2020). https://doi.org/10.3389/fbioe.2020.00217

    Article  Google Scholar 

  99. S. Hee, P. Dae, S. Park, J. Won, Scaffolds for bone tissue engineering fabricated from two different materials by the rapid prototyping technique PCL versus PLGA. J Mater Sci: Mater Med (2012). https://doi.org/10.1007/s10856-012-4738-8

    Article  Google Scholar 

  100. F.E. Freeman, D.C. Browe, D. Pj, J. Nulty, S. Von Euw, W.L. Grayson, Biofabrication of multiscale bone extracellular matrix scaffolds for bone tissue engineering. Eur Cell Mater 38, 168–187 (2019)

    Article  Google Scholar 

  101. T.B.F. Woodfield, J. Riesle, C.A. Van Blitterswijk, Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints. Cell Proliferat (2009). https://doi.org/10.1111/j.1365-2184.2009.00608.x

    Article  Google Scholar 

  102. Y. Guo et al., In vitro and in vivo study of 3D-printed porous tantalum scaffolds for repairing bone defects. ACS Biomater Sci Eng (2019). https://doi.org/10.1021/acsbiomaterials.8b01094

    Article  Google Scholar 

  103. D.G. Tamay, T.D. Usal, A.S. Alagoz, D. Yucel, 3D and 4D printing of polymers for tissue engineering applications. Front Bioeng Biotechnol (2019). https://doi.org/10.3389/fbioe.2019.00164

    Article  Google Scholar 

  104. M. Salah, L. Tayebi, K. Moharamzadeh, F.B. Naini, Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg (2020). https://doi.org/10.1186/s40902-020-00263-6

    Article  Google Scholar 

  105. A. Manuscript, “Acced Muspt,” 2020

  106. B.E. Grottkau, Z. Hui, Y. Yao, Y. Pang, Rapid fabrication of anatomically-shaped bone Sca ff olds using indirect 3D printing and perfusion techniques. IJMS (2020). https://doi.org/10.3390/ijms21010315

    Article  Google Scholar 

  107. B.I. Oladapo, S.A. Zahedi, A.O.M. Adeoye, 3D printing of bone scaffolds with hybrid biomaterials. Compos Part B (2019). https://doi.org/10.1016/j.compositesb.2018.09.065

    Article  Google Scholar 

  108. S.H. Irsen, S. Milz, C. Tille, M. Schieker, H. Seitz, Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci: Mater Med. 6, 1121–1124 (2005)

    Google Scholar 

  109. A.I. Pearce, R.G. Richards, S. Milz, E. Schneider, S.G. Pearce, Animal models for implant biomaterial research in bone: a review. Eur. Cells Mater. 13, 1–10 (2007). https://doi.org/10.22203/eCM.v013a01

    Article  Google Scholar 

  110. A. Haleem, M. Javaid, R.H. Khan, R. Suman, 3D printing applications in bone tissue engineering. J Clin Orthop Trauma (2020). https://doi.org/10.1016/j.jcot.2019.12.002

    Article  Google Scholar 

  111. P. Rider, ŽP. Kačarević, S. Alkildani, S. Retnasingh, R. Schnettler, M. Barbeck, Additive manufacturing for guided bone regeneration: a perspective for alveolar ridge augmentation. IJMS (2018). https://doi.org/10.3390/ijms19113308

    Article  Google Scholar 

  112. S. Sharma, S.A. Goel, Three-dimensional printing and its future in medical world. J. Med. Res. Innov. 3(1), 1–8 (2018). https://doi.org/10.15419/jmri.141.Publication

    Article  Google Scholar 

Download references

Acknowledgements

This research received no financial support by any funding organization

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Imran Ansari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest, between the authors or between any organisation of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A.I., Sheikh, N.A. Bone Tissue Regeneration: Rapid Prototyping Technology in Scaffold Design. J. Inst. Eng. India Ser. C 103, 1303–1324 (2022). https://doi.org/10.1007/s40032-022-00872-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-022-00872-2

Keywords

Navigation