Skip to main content
Log in

Recent Perspective of Next Generation Sequencing: Applications in Molecular Plant Biology and Crop Improvement

  • Review
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Nearly after three decades of Sanger sequencing method dominating the field of nucleotide sequencing, the new age of novel sequencing techniques commenced with 454-pyrosequencing in the year 2005 and thus started the era of next generation sequencing techniques. Since then many other novel sequencing techniques with increased accuracy, simplicity and cost-effectiveness have come up and called next to next generation sequencing techniques or third generation sequencing techniques. The scientific knowledge generated from next generation sequencing techniques has transformed the field of structural and functional genomic studies in different crop plants. In this review, various next generation sequencing techniques are described, with their applications and future prospective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99(2):175–185

    Article  PubMed  CAS  Google Scholar 

  2. Mardis ER (2013) Next-generation sequencing platforms. Ann Rev Anal Chem 6:287–303

    Article  CAS  Google Scholar 

  3. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J BioMed Biotechnol. doi:10.1155/2012/251364

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schadt EE, Turner S, Kasarskis A (2010) A window into third-generation sequencing. Hum Mol Genet 19(R2):R227–R240

    Article  PubMed  CAS  Google Scholar 

  5. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C (2014) Ten years of next-generation sequencing technology. Trends Genet 30(9):418–426

    Article  PubMed  CAS  Google Scholar 

  6. Hutchison CA (2007) DNA sequencing: bench to bedside and beyond. Nucleic Acids Res 35(18):6227–6237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Head SR, Komori HK, LaMere SA, Whisenant T, Van Nieuwerburgh F, Salomon DR, Ordoukhanian P (2014) Library construction for next-generation sequencing: overviews and challenges. Biotechniques 56(2):61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ozsolak F (2012) Third-generation sequencing techniques and applications to drug discovery. Expert Opin Drug Discov 7(3):231–243. doi:10.1517/17460441.2012.660145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yadav NK, Shukla P, Omer A, Pareek S, Singh R (2014) Next generation sequencing: potential and application in drug discovery. Sci World J. doi:10.1155/2014/802437

    Article  Google Scholar 

  10. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, Mwaigwisya S, Wain J, O’Grady J (2015) MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol 33(3):296–300

    Article  PubMed  CAS  Google Scholar 

  11. Braslavsky I, Hebert B, Kartalov E, Quake SR (2003) Sequence information can be obtained from single DNA molecules. Proc Natl Acad Sci 100(7):3960–3964

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ozsolak F (2009) Direct RNA sequencing. Nature 461:814–818

    Article  PubMed  CAS  Google Scholar 

  13. Bowers J, Mitchell J, Beer E, Buzby PR, Causey M, Efcavitch JW, Jarosz M, Krzymanska-Olejnik E, Kung L, Lipson D (2009) Virtual terminator nucleotides for next-generation DNA sequencing. Nat Methods 6(8):593–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Levene MJ, Korlach J, Turner SW, Foquet M, Craighead HG, Webb WW (2003) Zero-mode waveguides for single-molecule analysis at high concentrations. Science 299(5607):682–686

    Article  PubMed  CAS  Google Scholar 

  15. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138

    Article  PubMed  CAS  Google Scholar 

  16. Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA, Korlach J, Turner SW (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7(6):461–465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hackl T, Hedrich R, Schultz J, Förster F (2014) proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30(21):3004–3011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Healy K (2007) Nanopore-based single-molecule DNA analysis. Future Medicines 2(4):459–481

    CAS  Google Scholar 

  19. Bleidorn C (2015) Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Syst Biodivers 14(1):1–8

    Article  Google Scholar 

  20. Heather JM, Chain B (2015) The sequence of sequencers: the history of sequencing DNA. Genomics 107(1):1–8

    Article  PubMed  CAS  Google Scholar 

  21. Ip CL, Loose M, Tyson JR, de Cesare M, Brown BL, Jain M, Leggett RM, Eccles DA, Zalunin V, Urban JM (2015) MinION analysis and reference consortium: Phase 1 data release and analysis. F1000Research 4:1075

    PubMed  PubMed Central  Google Scholar 

  22. Li C, Chng KR, Boey JHE, Ng HQA, Wilm A, Nagarajan N (2016) INC-Seq: Accurate single molecule reads using nanopore sequencing. bioRxiv. doi:10.1101/038042

  23. Madoui M-A, Engelen S, Cruaud C, Belser C, Bertrand L, Alberti A, Lemainque A, Wincker P, Aury J-M (2015) Genome assembly using nanopore-guided long and error-free DNA reads. BMC Genom 16(1):1

    Article  CAS  Google Scholar 

  24. Greenleaf WJ, Block SM (2006) Single-molecule, motion-based DNA sequencing using RNA polymerase. Science 313(5788):801–801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Rusk N (2009) Focus on next-generation sequencing data analysis. Nat Methods 6(11s):S1–S1

    Article  PubMed  CAS  Google Scholar 

  26. Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, Krabichler B, Speicher MR, Zschocke J, Trajanoski Z (2014) A survey of tools for variant analysis of next-generation genome sequencing data. Brief Bioinform 15(2):256–278. doi:10.1093/bib/bbs086

    Article  PubMed  Google Scholar 

  27. Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99(2):193–208

    Article  PubMed  CAS  Google Scholar 

  28. Kumari M, Grover A, Yadav PV, Arif M, Ahmed Z (2013) Development of EST–SSR markers through data mining and their use for genetic diversity study in Indian accessions of Jatropha curcas L.: a potential energy crop. Genes Genomics 35(5):661–670

    Article  CAS  Google Scholar 

  29. Hao W, Wang S, Liu H, Zhou B, Wang X, Jiang T (2015) Development of SSR markers and genetic diversity in white birch (Betula platyphylla). PloS one 10(4):e0125235

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chen X-B, Xie Y-H, Sun X-M (2015) Development and characterization of polymorphic genic-SSR markers in Larix kaempferi. Molecules 20(4):6060–6067

    Article  PubMed  CAS  Google Scholar 

  31. Singh BK, Mishra DC, Yadav S, Ambawat S, Vaidya E, Tribhuvan KU, Kumar A, Kumar S, Kumar S, Chaturvedi K (2016) Identification, characterization, validation and cross-species amplification of genic-SSRs in Indian Mustard (Brassica juncea). J Plant Biochem Biotechnol. doi:10.1007/s13562-016-0353-y

    Article  Google Scholar 

  32. Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S (2012) SNP markers and their impact on plant breeding. Int J Plant Genom. doi:10.1155/2012/728398

    Article  Google Scholar 

  33. Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genom. doi:10.1155/2012/831460

    Article  Google Scholar 

  34. Azam S, Thakur V, Ruperao P, Shah T, Balaji J, Amindala B, Farmer AD, Studholme DJ, May GD, Edwards D (2012) Coverage-based consensus calling (CbCC) of short sequence reads and comparison of CbCC results to identify SNPs in chickpea (Cicer arietinum; Fabaceae), a crop species without a reference genome. Am J Bot 99(2):186–192

    Article  PubMed  CAS  Google Scholar 

  35. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29(4):e25–e25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Sansaloni C, Petroli C, Jaccoud D, Carling J, Detering F, Grattapaglia D, Kilian A Diversity Arrays Technology (DArT) and next-generation sequencing combined: genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. In: BMC Proceedings, 2011, vol Suppl 7. BioMed Central Ltd, p P54

  37. Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177(3):1889–1913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder MS, Kilian A, Korol AB, Fahima T (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117(1):103–115

    Article  PubMed  CAS  Google Scholar 

  39. Mace ES, Rami J-F, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9(1):13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Li X, Acharya A, Farmer AD, Crow JA, Bharti AK, Kramer RS, Wei Y, Han Y, Gou J, May GD (2012) Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing. BMC Genom 13(1):568

    Article  CAS  Google Scholar 

  41. Zhu Q-H, Spriggs A, Taylor JM, Llewellyn D, Wilson I (2014) Transcriptome and complexity-reduced, DNA-based identification of intraspecies single-nucleotide polymorphisms in the polyploid Gossypium hirsutum L. G3: Genes| Genomes| Genetics 4(10):1893–1905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Khera P, Upadhyaya HD, Pandey MK, Roorkiwal M, Sriswathi M, Janila P, Guo Y, McKain MR, Nagy ED, Knapp SJ (2013) Single nucleotide polymorphism-based genetic diversity in the reference set of peanut (spp.) by developing and applying cost-effective kompetitive allele specific polymerase chain reaction genotyping assays. Plant Genome 6(3):1–11

    CAS  Google Scholar 

  43. Uitdewilligen JG, Wolters A-MA, Bjorn B, Borm TJ, Visser RG, van Eck HJ (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One 8(5):e62355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Allen AM, Barker GL, Wilkinson P, Burridge A, Winfield M, Coghill J, Uauy C, Griffiths S, Jack P, Berry S (2013) Discovery and development of exome-based, co-dominant single nucleotide polymorphism markers in hexaploid wheat (Triticum aestivum L.). Plant Biotechnol J 11(3):279–295

    Article  PubMed  CAS  Google Scholar 

  45. Ma J-Q, Huang L, Ma C-L, Jin J-Q, Li C-F, Wang R-K, Zheng H-K, Yao M-Z, Chen L (2015) Large-scale SNP discovery and genotyping for constructing a high-density genetic map of tea plant using specific-locus amplified fragment sequencing (SLAF-seq). PLoS One 10(6):e0128798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Huang S, Deng L, Guan M, Li J, Lu K, Wang H, Fu D, Mason AS, Liu S, Hua W (2013) Identification of genome-wide single nucleotide polymorphisms in allopolyploid crop Brassica napus. BMC Genom 14(1):717

    Article  CAS  Google Scholar 

  47. Zou Z, Ishida M, Li F, Kakizaki T, Suzuki S, Kitashiba H, Nishio T (2013) QTL analysis using SNP markers developed by next-generation sequencing for identification of candidate genes controlling 4-methylthio-3-butenyl glucosinolate contents in roots of radish, Raphanus sativus L. PLoS One 8(1):e53541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Pootakham W, Jomchai N, Ruang-areerate P, Shearman JR, Sonthirod C, Sangsrakru D, Tragoonrung S, Tangphatsornruang S (2015) Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 105(5):288–295

    Article  PubMed  CAS  Google Scholar 

  49. Lim J-H, Yang H-J, Jung K-H, Yoo S-C, Paek N-C (2014) Quantitative trait locus mapping and candidate gene analysis for plant architecture traits using whole genome re-sequencing in rice. Mol Cells 37(2):149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Cubizolles N, Rey E, Choulet F, Rimbert H, Laugier C, Balfourier F, Bordes J, Poncet C, Jack P, James C (2016) Exploiting the repetitive fraction of the wheat genome for high-throughput single-nucleotide polymorphism discovery and genotyping. Plant Genome. doi:10.3835/plantgenome2015.09.0078

    Article  PubMed  Google Scholar 

  51. Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B (2012) Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot 63(15):5451–5462

    Article  PubMed  CAS  Google Scholar 

  52. Yang Z, Huang D, Tang W, Zheng Y, Liang K, Cutler AJ, Wu W (2013) Mapping of quantitative trait loci underlying cold tolerance in rice seedlings via high-throughput sequencing of pooled extremes. PLoS One 8(7):e68433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Hamblin MT, Rabbi IY (2014) The effects of restriction-enzyme choice on properties of genotyping-by-sequencing libraries: a study in (Cassava). Crop Sci 54(6):2603–2608

    Article  Google Scholar 

  54. Logan-Young CJ, John ZY, Verma SK, Percy RG, Pepper AE (2015) SNP discovery in complex allotetraploid genomes (Gossypium spp., Malvaceae) using genotyping by sequencing. Appl Plant Sci 3(3):1–8

    Google Scholar 

  55. Ophir R, Sherman A, Rubinstein M, Eshed R, Schwager MS, Harel-Beja R, Bar-Ya’akov I, Holland D (2014) Single-nucleotide polymorphism markers from de-novo assembly of the pomegranate transcriptome reveal germplasm genetic diversity. PLoS One 9(2):e88998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Pegadaraju V, Nipper R, Hulke B, Qi L, Schultz Q (2013) De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach. BMC Genom 14(1):556

    Article  CAS  Google Scholar 

  57. Wolf JB (2013) Principles of transcriptome analysis and gene expression quantification: an RNA-seq tutorial. Mol Ecol Resour 13(4):559–572

    Article  PubMed  CAS  Google Scholar 

  58. Qu Y, Zhou A, Zhang X, Tang H, Liang M, Han H, Zuo Y (2015) De novo transcriptome sequencing of low temperature-treated phlox subulata and analysis of the genes involved in cold stress. Int J Mol Sci 16(5):9732–9748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Trick M, Long Y, Meng J, Bancroft I (2009) Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 7(4):334–346

    Article  PubMed  CAS  Google Scholar 

  60. Guo S, Zheng Y, Joung J-G, Liu S, Zhang Z, Crasta OR, Sobral BW, Xu Y, Huang S, Fei Z (2010) Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genom 11(1):384

    Article  CAS  Google Scholar 

  61. Swarbreck SM, Lindquist EA, Ackerly DD, Andersen GL (2011) Analysis of leaf and root transcriptomes of soil-grown Avena barbata plants. Plant Cell Physiol 52(2):317–332

    Article  PubMed  CAS  Google Scholar 

  62. Franssen SU, Shrestha RP, Bräutigam A, Bornberg-Bauer E, Weber AP (2011) Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing. BMC Genom 12(1):227

    Article  CAS  Google Scholar 

  63. Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL (2012) Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. Plant Cell 24(2):738–761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Liu X, Lu Y, Yuan Y, Liu S, Guan C, Chen S, Liu Z (2013) De novo transcriptome of Brassica juncea seed coat and identification of genes for the biosynthesis of flavonoids. PLoS One 8(8):e71110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Chen T, Lv Y, Zhao T, Li N, Yang Y, Yu W, He X, Liu T, Zhang B (2013) Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum) cultivar in response to infection by tomato yellow leaf curl virus. PLoS One 8(11): e80816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Kudapa H, Azam S, Sharpe AG, Taran B, Li R, Deonovic B, Cameron C, Farmer AD, Cannon SB, Varshney RK (2014) Comprehensive transcriptome assembly of chickpea (Cicer arietinum L.) using Sanger and next generation sequencing platforms: development and applications. PLoS One 9(1): e86039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Yang P, Han J, Huang J (2014) Transcriptome sequencing and de novo analysis of cytoplasmic male sterility and maintenance in JA-CMS cotton. PloS one 9(11): e112320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Li G, Wang D, Yang R, Logan K, Chen H, Zhang S, Skaggs MI, Lloyd A, Burnett WJ, Laurie JD (2014) Temporal patterns of gene expression in developing maize endosperm identified through transcriptome sequencing. Proc Natl Acad Sci 111(21):7582–7587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Cabeza R, Koester B, Liese R, Lingner A, Baumgarten V, Dirks J, Salinas-Riester G, Pommerenke C, Dittert K, Schulze J (2014) An RNA sequencing transcriptome analysis reveals novel insights into molecular aspects of the nitrate impact on the nodule activity of Medicago truncatula. Plant Physiol 164(1):400–411

    Article  PubMed  CAS  Google Scholar 

  70. Wakasa Y, Oono Y, Yazawa T, Hayashi S, Ozawa K, Handa H, Matsumoto T, Takaiwa F (2014) RNA sequencing-mediated transcriptome analysis of rice plants in endoplasmic reticulum stress conditions. BMC Plant Biol 14(1):101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Sharma R, Mishra M, Gupta B, Parsania C, Singla-Pareek SL, Pareek A (2015) De novo assembly and characterization of stress transcriptome in a salinity-tolerant variety CS52 of Brassica juncea. PloS one 10(5): e0126783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Zhao J-L, Pan J-S, Guan Y, Nie J-T, Yang J-J, Qu M-L, He H-L, Cai R (2015) Transcriptome analysis in Cucumis sativus identifies genes involved in multicellular trichome development. Genomics 105(5):296–303

    Article  PubMed  CAS  Google Scholar 

  73. Zakaria WNAW, Loke K-K, Goh H-H, Noor NM (2016) RNA-seq analysis for plant carnivory gene discovery in Nepenthes × ventrata. Genom Data 7:18–19

    Article  Google Scholar 

  74. Xu Y, Li X, Lin J, Wang Z, Yang Q, Chang Y (2015) Transcriptome sequencing and analysis of major genes involved in calcium signaling pathways in pear plants (Pyrus calleryana Decne.). BMC Genom 16(1):1

    Article  CAS  Google Scholar 

  75. Lu G, Harper AL, Trick M, Morgan C, Fraser F, O’Neill C, Bancroft I (2014) Associative transcriptomics study dissects the genetic architecture of seed glucosinolate content in Brassica napus. DNA Res 21(6):613–625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Sundaresan S, Philosoph-Hadas S, Riov J, Mugasimangalam R, Kuravadi NA, Kochanek B, Salim S, Tucker ML, Meir S (2015) De novo transcriptome sequencing and development of abscission zone-specific microarray as a new molecular tool for analysis of tomato organ abscission. Front Plant Sci 6:1258

    PubMed  Google Scholar 

  77. Iaria D, Chiappetta A, Muzzalupo I (2016) De novo transcriptome sequencing of Olea europaea L. to identify genes involved in the development of the pollen tube. Sci World J. doi:10.1155/2016/4305252

    Article  Google Scholar 

  78. Li S, Fan C, Li Y, Zhang J, Sun J, Chen Y, Tian C, Su X, Lu M, Liang C (2016) Effects of drought and salt-stresses on gene expression in Caragana korshinskii seedlings revealed by RNA-seq. BMC Genom 17(1):1

    Google Scholar 

  79. Zhu H, Wang H, Zhu Y, Zou J, Zhao F-J, Huang C-F (2015) Genome-wide transcriptomic and phylogenetic analyses reveal distinct aluminum-tolerance mechanisms in the aluminum-accumulating species buckwheat (Fagopyrum tataricum). BMC Plant Biol 15(1):1

    Article  CAS  Google Scholar 

  80. Qiao Q, Wang Q, Han X, Guan Y, Sun H, Zhong Y, Huang J, Zhang T (2016) Transcriptome sequencing of Crucihimalaya himalaica (Brassicaceae) reveals how Arabidopsis close relative adapt to the Qinghai-Tibet Plateau. Sci Rep 6:21729. doi:10.1038/srep21729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Nielsen KL, Hogh AL, Emmersen J (2006) DeepSAGE—digital transcriptomics with high sensitivity, simple experimental protocol and multiplexing of samples. Nucleic Acids Res 34(19):e133. doi:10.1093/nar/gkl714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92(5):255–264

    Article  PubMed  CAS  Google Scholar 

  83. Huang Y, Zhang JL, Yu XL, Xu TS, Wang ZB, Cheng XC (2013) Molecular functions of small regulatory noncoding RNA. Biochemistry (Moscow) 78(3):221–230

    Article  CAS  Google Scholar 

  84. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2(5):642–652

    Article  Google Scholar 

  85. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  PubMed  CAS  Google Scholar 

  86. Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu A-L, Zhao Y, McDonald H, Zeng T, Hirst M (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18(4):610–621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Li A, Liu D, Wu J, Zhao X, Hao M, Geng S, Yan J, Jiang X, Zhang L, Wu J (2014) mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 26(5):1878–1900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Baldrich P, San Segundo B (2016) MicroRNAs in rice innate immunity. Rice 9(1):1

    Article  Google Scholar 

  89. Lunardon A, Forestan C, Farinati S, Axtell M, Varotto S (2016) Genome-wide characterization of maize small RNA loci and their regulation in the required to maintain repression6-1 (rmr6-1) mutant and long-term abiotic stresses. Plant Physiol 170(3):1535–1548

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Gao J, Yin F, Liu M, Luo M, Qin C, Yang A, Yang S, Zhang Z, Shen Y, Lin H (2015) Identification and characterisation of tobacco microRNA transcriptome using high-throughput sequencing. Plant Biol 17(3):591–598

    Article  PubMed  CAS  Google Scholar 

  91. Lewsey MG, Hardcastle TJ, Melnyk CW, Molnar A, Valli A, Urich MA, Nery JR, Baulcombe DC, Ecker JR (2016) Mobile small RNAs regulate genome-wide DNA methylation. Proc Natl Acad Sci 113(6):E801–E810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, Plasterk RH, Hannon GJ, Draper BW, Ketting RF (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129(1):69–82. doi:10.1016/j.cell.2007.03.026

    Article  PubMed  CAS  Google Scholar 

  93. Brent MR (2008) Steady progress and recent breakthroughs in the accuracy of automated genome annotation. Nat Rev Genet 9(1):62–73

    Article  PubMed  CAS  Google Scholar 

  94. Schneeberger K (2014) Using next-generation sequencing to isolate mutant genes from forward genetic screens. Nat Rev Genet 15(10):662–676

    Article  PubMed  CAS  Google Scholar 

  95. Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS (2007) SNP discovery via 454 transcriptome sequencing. Plant J 51(5):910–918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Patwardhan A, Ray S, Roy A (2014) Molecular markers in phylogenetic studies—a review. J Phylogenet Evolut Biol 2(2):131

    Google Scholar 

  97. Grover CE, Salmon A, Wendel JF (2012) Targeted sequence capture as a powerful tool for evolutionary analysis1. Am J Bot 99(2):312–319

    Article  PubMed  Google Scholar 

  98. Steele PR, Hertweck KL, Mayfield D, McKain MR, Leebens-Mack J, Pires JC (2012) Quality and quantity of data recovered from massively parallel sequencing: examples in Asparagales and Poaceae. Am J Bot 99(2):330–348

    Article  PubMed  CAS  Google Scholar 

  99. Project rg (2014) The 3,000 rice genomes project. GigaScience 3:7. doi:10.1186/2047-217X-3-7

    Article  CAS  Google Scholar 

  100. Pease JB, Haak DC, Hahn MW, Moyle LC (2016) Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biol 14(2):e1002379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Ashkani S, Yusop MR, Shabanimofrad M, Azadi A, Ghasemzadeh A, Azizi P, Latif MA (2015) Allele mining strategies: principles and utilisation for blast resistance genes in rice (Oryza sativa L.). Curr Issues Mol Biol 17:57–74

    PubMed  Google Scholar 

  102. Kumar GR, Sakthivel K, Sundaram RM, Neeraja CN, Balachandran S, Rani NS, Viraktamath B, Madhav M (2010) Allele mining in crops: prospects and potentials. Biotechnol Adv 28(4):451–461

    Article  PubMed  CAS  Google Scholar 

  103. Lyu J, Zhang S, Dong Y, He W, Zhang J, Deng X, Zhang Y, Li X, Li B, Huang W (2013) Analysis of elite variety tag SNPs reveals an important allele in upland rice. Nat Commun 4:1–9

    Article  CAS  Google Scholar 

  104. Jansen RC, Nap J-P (2001) Genetical genomics: the added value from segregation. Trends Genet 17(7):388–391

    Article  PubMed  CAS  Google Scholar 

  105. Breitling R, Li Y, Tesson BM, Fu J, Wu C, Wiltshire T, Gerrits A, Bystrykh LV, De Haan G, Su AI (2008) Genetical genomics: spotlight on QTL hotspots. PLoS Genet 4(10):e1000232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Callinan PA, Feinberg AP (2006) The emerging science of epigenomics. Hum Mol Genet 15(suppl 1):R95–R101

    Article  PubMed  CAS  Google Scholar 

  107. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S, Nelson SF, Pellegrini M, Jacobsen SE (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452(7184):215–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Jacinto FV, Ballestar E, Esteller M (2008) Methyl-DNA immunoprecipitation (MeDIP): hunting down the DNA methylome. Biotechniques 44(1):35

    Article  PubMed  CAS  Google Scholar 

  109. Pellegrini M, Ferrari R (2012) Epigenetic analysis: ChIP-chip and ChIP-seq. In: Wang J, Tan AC, Tian T (eds) Next generation microarray bioinformatics. Springer, Berlin, pp 377–387

  110. Yu M, Hon GC, Szulwach KE, Song C-X, Jin P, Ren B, He C (2012) Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine. Nat Protoc 7(12):2159–2170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295(5558):1306–1311

    Article  PubMed  CAS  Google Scholar 

  112. Darst RP, Pardo CE, Ai L, Brown KD, Kladde MP (2010) Bisulfite sequencing of DNA. Curr Protoc Mol Biol. doi:10.1002/0471142727.mb0709s91

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O, Alix A, McCosh RB, Chen H, Schork NJ (2013) Patterns of population epigenomic diversity. Nature 495(7440):193–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Le TN, Miyazaki Y, Takuno S, Saze H (2015) Epigenetic regulation of intragenic transposable elements impacts gene transcription in Arabidopsis thaliana. Nucleic Acids Res 43(8):3911–3921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27(9):522–530

    Article  PubMed  CAS  Google Scholar 

  116. Yu C-P, Chen SC-C, Chang Y-M, Liu W-Y, Lin H-H, Lin J-J, Chen HJ, Lu Y-J, Wu Y-H, Lu M-YJ (2015) Transcriptome dynamics of developing maize leaves and genomewide prediction of cis elements and their cognate transcription factors. Proc Natl Acad Sci 112(19):E2477–E2486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Boden SA, Kavanová M, Finnegan EJ, Wigge PA (2013) Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A. Z-nucleosomes. Genome Biol 14:R65

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Zhang W, Zhang T, Wu Y, Jiang J (2012) Genome-wide identification of regulatory DNA elements and protein-binding footprints using signatures of open chromatin in Arabidopsis. Plant Cell 24(7):2719–2731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Newton AC, Fitt BD, Atkins SD, Walters DR, Daniell TJ (2010) Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. Trends Microbiol 18(8):365–373

    Article  PubMed  CAS  Google Scholar 

  120. Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci 5:1–23

    Article  Google Scholar 

  121. Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 31(6):533–538

    Article  PubMed  CAS  Google Scholar 

  122. Roossinck MJ (2014) Metagenomics of plant and fungal viruses reveals an abundance of persistent lifestyles. Front Microbiol 5:767

    PubMed  Google Scholar 

  123. Mhuantong W, Charoensawan V, Kanokratana P, Tangphatsornruang S, Champreda V (2015) Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnol Biofuels 8(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Macaulay IC, Voet T (2014) Single cell genomics: advances and future perspectives. PLoS Genet 10(1):e1004126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Biesecker LG, Spinner NB (2013) A genomic view of mosaicism and human disease. Nat Rev Genet 14(5):307–320

    Article  PubMed  CAS  Google Scholar 

  126. Blainey PC (2013) The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev 37(3):407–427. doi:10.1111/1574-6976.12015

    Article  PubMed  CAS  Google Scholar 

  127. Diwan D, Komazaki S, Suzuki M, Nemoto N, Aita T, Satake A, Nishigaki K (2014) Systematic genome sequence differences among leaf cells within individual trees. BMC Genom 15(1):142

    Article  CAS  Google Scholar 

  128. Li X, Li L, Yan J (2015) Dissecting meiotic recombination based on tetrad analysis by single-microspore sequencing in maize. Nat Commun 6:1–9

    Google Scholar 

  129. Farlik M, Sheffield NC, Nuzzo A, Datlinger P, Schönegger A, Klughammer J, Bock C (2015) Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep 10(8):1386–1397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX, Teng MJ, Goolam M, Saurat N, Coupland P, Shirley LM (2015) G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat Methods 12(6):519–522

    Article  PubMed  CAS  Google Scholar 

  131. Warr A, Robert C, Hume D, Archibald A, Deeb N, Watson M (2015) Exome sequencing: current and future perspectives. G3: Genes| Genomes| Genetics 5(8):1543–1550

    Article  PubMed  PubMed Central  Google Scholar 

  132. Mascher M, Richmond TA, Gerhardt DJ, Himmelbach A, Clissold L, Sampath D, Ayling S, Steuernagel B, Pfeifer M, D’Ascenzo M (2013) Barley whole exome capture: a tool for genomic research in the genus Hordeum and beyond. Plant J 76(3):494–505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Winfield MO, Wilkinson PA, Allen AM, Barker GL, Coghill JA, Burridge A, Hall A, Brenchley RC, D’Amore R, Hall N (2012) Targeted re-sequencing of the allohexaploid wheat exome. Plant Biotechnol J 10(6):733–742

    Article  PubMed  CAS  Google Scholar 

  134. Neves LG, Davis JM, Barbazuk WB, Kirst M (2013) Whole-exome targeted sequencing of the uncharacterized pine genome. Plant J 75(1):146–156

    Article  PubMed  CAS  Google Scholar 

  135. Henry IM, Nagalakshmi U, Lieberman MC, Ngo KJ, Krasileva KV, Vasquez-Gross H, Akhunova A, Akhunov E, Dubcovsky J, Tai TH (2014) Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 26(4):1382–1397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Udomchalothorn T, Plaimas K, Comai L, Buaboocha T, Chadchawan S (2014) Molecular karyotyping and exome analysis of salt-tolerant rice mutant from somaclonal variation. Plant Genome 7(3):1–11

    Article  CAS  Google Scholar 

  137. King R, Bird N, Ramirez-Gonzalez R, Coghill JA, Patil A, Hassani-Pak K, Uauy C, Phillips AL (2015) Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS One 10(9):e0137549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Dasgupta MG, Dharanishanthi V, Agarwal I, Krutovsky KV (2015) Development of genetic markers in eucalyptus species by target enrichment and exome sequencing. PLoS One 10(1):e0116528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Cao J, Schneeberger K, Ossowski S, Günther T, Bender S, Fitz J, Koenig D, Lanz C, Stegle O, Lippert C (2011) Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat Genet 43(10):956–963

    Article  PubMed  CAS  Google Scholar 

  140. Long Q, Rabanal FA, Meng D, Huber CD, Farlow A, Platzer A, Zhang Q, Vilhjálmsson BJ, Korte A, Nizhynska V (2013) Massive genomic variation and strong selection in Arabidopsis thaliana lines from Sweden. Nat Genet 45(8):884–890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Indian Council of Agricultural Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Yadav.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P., Vaidya, E., Rani, R. et al. Recent Perspective of Next Generation Sequencing: Applications in Molecular Plant Biology and Crop Improvement. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 88, 435–449 (2018). https://doi.org/10.1007/s40011-016-0770-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-016-0770-7

Keywords

Navigation