Skip to main content

Advertisement

Log in

Biomass Production and Carbon Storage Potential of Selected Old-Growth Temperate Forests in Garhwal Himalaya, India

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Fifteen old-growth temperate forest types were assessed for biomass productivity and carbon (C) storage potential by laying out sample plots randomly in each forest type along with an altitudinal transect in Garhwal Himalaya. The average total carbon density values ranged between 96.53 ± 4.92 Mg C ha−1 (moist mixed-deciduous forest) to 307.11 ± 11.28 Mg C ha−1 (Cedrus deodara forest). It was observed that conifer-dominated forest types had higher average biomass and C stocks as 479.01 Mg ha−1 and 220.34 Mg C ha−1 respectively. In broadleaf dominated forest types, these values were 394.08 Mg ha−1 and 177 Mg C ha−1 respectively. The study suggests that owing to their long rotation periods the growth of conifers should be encouraged particularly in the inaccessible areas of higher Himalaya and old-growth forests should be protected as they continue to sequester C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beedlow PA, Tingey DT, Phillips DL, Hogsett WE, Olszyk DM (2004) Rising atmospheric CO2 and carbon sequestration in forests. Front Ecol Environ 2(6):315–322

    Google Scholar 

  2. Tans P, Keeling R (2012) Trends in atmospheric carbon dioxide, 2011. http://www.esrl.noaa.gov/gmd/ccgg/trends. Accessed April 2012

  3. Johnson MG, Kem JS (2002) Quantifying the organic carbon held in forested soils of the United States and Pueto Rico. In: Kimble JM, Heath LS, Birdsey RA, Lal R (eds) The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effects. Lewis Publishers, Boca Raton

    Google Scholar 

  4. IPCC (2007) Climate change 2007: fourth assessment synthesis report. In: Pachauri RK, Reisinger A (eds) International panel on climate change. Cambridge University Press, UK

  5. Malhi Y, Meir P, Brown S (2002) Forests carbon and global climate. Philos Trans R Soc Lond A 360:1567–1591

    Article  CAS  Google Scholar 

  6. Cairns MA, Olmsted I, Granados J, Argaez J (2003) Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. For Ecol Manag 186(1–3):125–132

    Article  Google Scholar 

  7. Li Zhou, Dai L, Wang S, Huang X, Wang X, Qi L, Wang Q, Li G, Wei Y, Shao G (2011) Changes in carbon density for the three old growth forests on Changbai Mountain, North East China: 1981–2010. Ann For Sci. doi:10.1007/s1395-011-0101-3

    Google Scholar 

  8. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) Large and persistent carbon sink in the world’s forests. Science 333:988–993

    Article  CAS  PubMed  Google Scholar 

  9. Hall RJ, Skakun RS, Arsenault EJ, Case BS (2006) Modelling forest stand structure attributes using Landsat ETM+ data: application to mapping of aboveground biomass and stand volume. For Ecol Manag 225(1–3):378–390

    Article  Google Scholar 

  10. Houghton RA, Lawrence KT, Hackle JL, Brown S (2001) The spatial distribution of forest biomass in the Brazilian Amazon: a comparison of estimates. Glob Change Biol 7:731–746

    Article  Google Scholar 

  11. Gower ST, Krankina O, Olson RJ, Apps M, Linder S, Wan C (2001) Net primary production and carbon allocation patterns of boreal forest ecosystem. Ecol Appl 11(5):1395–1411

    Article  Google Scholar 

  12. Field C, Raupach M, Victoria R (2004) The global carbon cycle: integrating humans, climate and the natural world. In: Field C, Raupach M (eds) The global carbon cycle: integrating humans, climate and the natural world. Island Press, Washington, pp 1–16

    Google Scholar 

  13. FSI (2011) State of forest report 2011. Forest Survey of India, Ministry of Environment and Forests, Government of India, Dehradun, India, pp 236–240

  14. UNEP–WCMC (2002) Mountain watch: environmental change and sustainable development in mountains. UNEP World Conservation Monitoring Centre, Cambridge

    Google Scholar 

  15. IPCC (2001) Climate change 2001: the scientific basis. In: Houghton JT et al (ed) Contribution of group work to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, UK

  16. Becker A, Korner C, Brun JJ, Guisan A, Tappeiner U (2007) Ecological and land use studies along elevational gradients. Mt Res Dev 27:58–65

    Article  Google Scholar 

  17. Luyssaert S, Schulze ED, Borner A, Knohl A, Hessenmoller D, Law BE, Ciais P, Grace P (2008) Oldgrowth forests as global carbon sink. Nature 455:213–215

    Article  CAS  PubMed  Google Scholar 

  18. Gairola S (2010) Phtyodiversity, forest composition, growing stock variation and regeneration status in the Mandal-Chopta Forest of Garhwal Himalaya. Thesis submitted to for Doctor of Philosophy in Botany, HNBGU

  19. Sharma CM, Baduni NP, Gairola S, Ghildiyal SK, Suyal S (2010) Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India. For Ecol Manag 260:2170–2179

    Article  Google Scholar 

  20. FSI (1996) Volume equations for forests of India, Nepal and Bhutan, Forest Survey of India, Ministry of Environment and Forests, Government of India

  21. Brown SL, Schroeder PE (1999) Spatial patterns of aboveground production and mortality of woody biomass for Eastern U.S. forests. Ecol Appl 9(3):968–980

    Google Scholar 

  22. Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111(1):1–11

    Article  PubMed  Google Scholar 

  23. Manhas RK, Negi JDS, Rajesh K, Chauhan PS (2006) Temporal assessment of growing stock, biomass and carbon stock of Indian forests. Clim Change 74:191–221

    Article  CAS  Google Scholar 

  24. Gairola S, Sharma CM, Ghildiyal SK, Suyal S (2011) Live-tree biomass and carbon variation along an altitudinal gradient in moist temperate valley slopes of the Garhwal Himalaya (India). Curr Sci 100(12):1862–1870

    Google Scholar 

  25. Tiwari AK, Saxena AK, Singh JS (1985) Inventory of forest biomass for Indian central Himalaya. In: Singh JS (ed) Environmental regeneration in Himalaya: concepts and Strategies. Gyanodaya Prakashan, Nainital, pp 235–247

    Google Scholar 

  26. Singh SP, Adhikari BS, Zobel DB (1994) Biomass productivity, leaf longevity and forest structure in the Central Himalaya. Ecol Monogr 64:401–421

    Article  Google Scholar 

  27. Singh JS, Singh SP (1987) Forest vegetation of the Himalaya. Bot Rev 53:80–192

    Article  Google Scholar 

  28. Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests, biome patterns related to forest age. Glob Change Biol 110:2052–2077

    Article  Google Scholar 

  29. Warran A, Patwardhan A (2008) Carbon sequestering potential of trees in and around Pune city. http://www.ranwa.org. Accessed 17 Dec 2008

  30. Chhabra A, Parila S, Dadhwal VK (2002) Growing stock based forest biomass estimate of India. Biomass Bioenergy 22(3):187–194

    Article  Google Scholar 

  31. Haripriya GS (2003) Carbon budget of the Indian forest ecosystem. Clim Change 56:291–319

    Article  CAS  Google Scholar 

  32. Sharma CM, Gairola S, Baduni NP, Ghildiyal SK, Suyal S (2011) Variation in carbon stocks on the different slope aspects in seven major forest types of temperate region of Garhwal Himalayas, India. J Biosci 36(4):701–708

    Article  CAS  PubMed  Google Scholar 

  33. Zhu B, Wang X, Fang J, Pia S, Shen H, Zhao S, Peng C (2010) Altitudinal changes in carbon storage of temperate forests on Mt. Changbai, North East China. J Plant Res 123:439–452

    Article  PubMed  Google Scholar 

  34. Jina BS, Sah P, Bhatt MD, Rawat YS (2008) Estimating carbon sequestration rates and total carbon stock pile in degraded and non-degraded sites of Oak and Pine forest of Kumaun Central Himalaya. Ecoprint 15:75–81

    Google Scholar 

  35. Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  CAS  PubMed  Google Scholar 

  36. Haripriya GS (2000) Estimates of biomass in Indian forests. Biomass Bioenergy 19(4):245–258

    Article  Google Scholar 

  37. Singh JS, Tiwari AK, Saxena AK (1985) Himalayan forests: a net source of carbon to the atmosphere. Environ Conserv 12:67–69

    Article  CAS  Google Scholar 

  38. Houghton RA, Boone RD, Melillo JM, Palm CA, Woodwell GM, Myers N, Moore B, Skole DL (1985) Net flux of CO2 from tropical forests in 1980. Nature 316:617–620

    Article  CAS  Google Scholar 

  39. Brown SL, Schroeder P, Kern JS (1999) Spatial distribution of biomass in forests of the eastern USA. For Ecol Manag 123(1):81–90

    Article  Google Scholar 

  40. Press MC, Huntley NH, Levin S (2000) Ecology: achievements and challenge. Blackwell, Oxford

    Google Scholar 

  41. Bhatt JA, Kaiser I, Kumar M, Negi AK, Todaria NP (2013) Carbon stock of trees along an elevational gradient in temperate forests of Kedarnath Wildlife Sanctuary. For Sci Pract 15(2):137–143

    Article  Google Scholar 

  42. Negi JDS, Manhas RK, Chauhan PS (2003) Carbon allocation in different components of some tree species of India: a new approach for carbon estimation. Curr Sci 85:101–104

    Google Scholar 

  43. Moser G, Hertel D, Leuschner C (2007) Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:924–935

    Article  Google Scholar 

  44. Rai ID, Adhikari BS, Rawat GS (2010) A unique patch of timberline ecotone with three species of Lady’s slipper orchids in Garhwal Himalaya, India. JoTT 2(3):766–769

    Google Scholar 

  45. Korner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  46. Odum EP (1969) The strategy of ecosystem development. Science 164:262–270

    Article  CAS  PubMed  Google Scholar 

  47. Jarvis PG (1989) Atmospheric carbon dioxide and forests. Philos Trans R Soc Lond Ser B 324:369–392

    Article  Google Scholar 

  48. Righelato R, Spracklen DV (2007) Carbon mitigation by biofuels or by saving and restoring forests? Science 317:902–915

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

One of the authors (CMS) is thankful to Department of Science and Technology, Government of India, New Delhi, for providing the financial support vide Project No. SERB/SR/SO/PS/14/2010. The valuable suggestions made by anonymous referees are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratibha Baluni.

Ethics declarations

Conflict of interest

The authors also declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimri, S., Baluni, P. & Sharma, C.M. Biomass Production and Carbon Storage Potential of Selected Old-Growth Temperate Forests in Garhwal Himalaya, India. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 87, 1327–1333 (2017). https://doi.org/10.1007/s40011-016-0708-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-016-0708-0

Keywords

Navigation