Skip to main content
Log in

Microbial Fuel Cells and Their Applications for Cost Effective Water Pollution Remediation

  • Review
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

A recent research in the field of microbial fuel cell (MFC) is exploring bio-electrochemical processes to generate electricity. Fundamentals to microbial fuel cell are proper cost effective cell design, electrodes, substrates, proton exchange membranes and bacterial species forming biofilms on electrode. The MFC is considered to be specific for current generation by bacterial metabolism. The current review uncovers the fact that MFC technology is not only for the current generation but is also effective for bio-remediation, bio-sensors and for biosynthesis of valuable organic products. Industrial and domestic wastes are pollutants, toxic for health and environment. Their chemical treatment itself requires expensive chemicals which in turn lead to other composites in the environment. The cost effective and safe technique has been employed for remediation like catalytically active bio-electrodes in MFC. The exoelectrogens are capable of electron transfer by forming conductive biofilms on the solid surfaces of electrodes. The Geobacter, Shewanella and Sporomusa species have the tendency to form nanowires or have C-type cytochromes for electron conduction. The redox capability of these electro active biofilms is not only to reduce the hazardous materials but also to catalyze the electrochemical reactions like corrosion alleviation, biosensor development, bio-remediation and biochemical synthesis. These bio-electrochemical techniques have been proved to be the best for low cost, high catalytic activity, less pollution and no secondary contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Astsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19:414–419

    Article  Google Scholar 

  2. Bengelsdorf BS, Dürre P (2012) Pathway engineering and synthetic biology using acetogens. FEBS Lett 586:2191–2198

    Article  Google Scholar 

  3. Mohan SV, Velvizhi G, Krishna KV, Babu ML (2014) Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. Bioresour Technol 165:355–364

    Article  Google Scholar 

  4. Gohil JM, Karamanev DG (2013) Novel pore-filled polyelectrolyte composite membranes for cathodic microbial fuel cell application. J Power Sources 243:603–610

    Article  CAS  Google Scholar 

  5. Singh D, Pratap D, Baranwal Y, Kumar B, Chaudhary RK (2010) Microbial fuel cells: a green technology for power generation. Ann Biol Res 3:128–138

    Google Scholar 

  6. Bruce L, Erthamelers B, Rozendal R, Keller J, Korneel R (2006) MFC technology and methodology. Environ Sci Technol 40(17):5181–5192

    Article  Google Scholar 

  7. Kalathil S et al (2013) Production of bioelectricity, bio-hydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms. Biotechnol Adv 31(6):915–924

    Article  CAS  PubMed  Google Scholar 

  8. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716

    Article  CAS  PubMed  Google Scholar 

  9. Rabaey K, Girguis P, Nielsen LK (2011) Metabolic and practical considerations on microbial electrosynthesis. Curr Opin Biotechnol 22(3):371–377

    Article  CAS  PubMed  Google Scholar 

  10. Mohanakrishna G, Mohan SV, Sarma PN (2010) Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. J Hazard Mater 177(1–3):487–494

    Article  CAS  PubMed  Google Scholar 

  11. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101

    Article  CAS  PubMed  Google Scholar 

  12. Li Z, Zhang X, Lei L (2008) Electricity production during the treatment of real electroplating wastewater containing Cr+6 using microbial fuel cell. Process Biochem 43:1352–1358

    Article  CAS  Google Scholar 

  13. Jabeen G et al (2015) Acetyl-CoA pathway for biosynthesis of organics. Asian J Chem 27(1):1–8

    Article  CAS  Google Scholar 

  14. Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

    Article  CAS  PubMed  Google Scholar 

  15. Davis F, Higson SP (2007) Biofuel cells—recent advances and applications. Biosens Bioelectron 22:1224–1235

    Article  CAS  PubMed  Google Scholar 

  16. Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4(7):497–508

    Article  CAS  PubMed  Google Scholar 

  17. Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17:327–332

    Article  CAS  PubMed  Google Scholar 

  18. Huanga L, Regan JM, Quana X (2011) Electron transfer mechanisms, new applications, and performance of biocathode. Bioresour Technol 102:316–323

    Article  Google Scholar 

  19. Sisler FD (1962) Electrical energy from microbial processes. J Wash Acad Sci 52:182–187

    Google Scholar 

  20. Rabaey K, Boon N, Hofte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 9(9):3401–3408

    Article  Google Scholar 

  21. Hernandez ME, Kappier A, Newman DK (2004) Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl Environ Microbiol 2(79):921–928

    Article  Google Scholar 

  22. Bond DR, Lovley DR (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl Environ Microbiol 71:2186–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim HJ, Park SH et al (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microbiol Technol 30:145–152

    Article  CAS  Google Scholar 

  24. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci 103(30):11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci 107(42):18127–18131

    Article  PubMed  PubMed Central  Google Scholar 

  26. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

  27. Vargas M et al (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4(2):00105–00113

    Article  Google Scholar 

  28. Reguera G et al (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lovley DR (2011) Powering microbes with electricity, direct electron transfer from electrodes to microbes. Environ Microbiol Rep 3(1):27–35

    Article  CAS  PubMed  Google Scholar 

  30. Franks AE, Nevin KP, Glaven RH, Lovley DR (2010) Microtoming coupled with microarray analysis to evaluate potential differences in the metabolic status of Geobacter sulfurreducens at different depths in anode biofilms. ISME J 4:509–519

    Article  PubMed  Google Scholar 

  31. Strycharz SM et al (2011) Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochem 80(2):142–150

    Article  CAS  Google Scholar 

  32. Erabl B et al (2010) Application of electro-active biofilms. Biofouling 26(1):57–71

    Article  Google Scholar 

  33. Kelly PT, He Z (2014) Understanding the application niche of microbial fuel cells in a cheese wastewater treatment process. Bioresour Technol 157:154–160

    Article  CAS  PubMed  Google Scholar 

  34. Hou B, Sun J, Hu Y (2011) Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation. Appl Microbiol Biotechnol 90(4):1563–1572

    Article  CAS  PubMed  Google Scholar 

  35. Dios MA et al (2014) Application of benthonic microbial fuel cells and electro-Fenton process to dye decolourisation. J Ind Eng Chem 20(5):3754–3760

  36. Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, Löffler FE, Lovley DR (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachloroethene by Geobacter lovleyi. Appl Environ Micribiol 74(19):5943–5950

    Article  CAS  Google Scholar 

  37. Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M (2009) Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol Bioeng 101:85–91

    Article  Google Scholar 

  38. Thrash JC, Van Trump JI, Weber KA, Miller E et al (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41(5):1740–1746

    Article  CAS  PubMed  Google Scholar 

  39. Rhoads A, Beyenal H, Lewandowski Z (2005) Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environ Sci Technol 39:4666–4671

    Article  CAS  PubMed  Google Scholar 

  40. Phillips EJP, Lovley DR, Landa ER (1995) Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction. J Ind Microbiol 14:203–207

    Article  CAS  Google Scholar 

  41. Gregory KB, Lovley DR (2005) Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ Sci Technol 39:8943–8947

    Article  CAS  PubMed  Google Scholar 

  42. Gregory KB, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6:596–604

    Article  CAS  PubMed  Google Scholar 

  43. Clauwaert P, Aelterman P et al (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360

    Article  CAS  PubMed  Google Scholar 

  44. Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Resour 42:3013–3024

    CAS  Google Scholar 

  45. Nielsen M, Jetten MSM, Revsbech NP (2004) Bacterium-based NO2-biosensor for environmental applications. Appl Environ Microbiol 70:6551–6558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Katarzyna L, Katarzyna C, Kamili M (2011) Biotechnological synthesis of 1,3-propanediol using Clostridium ssp. Afr J Biotechnol 10(54):11093–11101

    Article  Google Scholar 

  47. Yuedong Z, Yujiu M, Fangxiao Y, Chunhui Z (2009) Continuous acetone–butanol–ethanol production by corn stalk immobilized cells. J Ind Microbiol Biotechnol 36:1117–1121

    Article  Google Scholar 

  48. Nevin KP et al (2010) Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1(2). doi:10.1128/mBio.00103-10

    PubMed  PubMed Central  Google Scholar 

  49. Kopke M et al (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad USA 107:13087–13092

    Article  CAS  Google Scholar 

  50. Liu J, Mattiasson B (2002) Microbial BOD sensors for wastewater analysis. Water Resour 36:3786–3802

    CAS  Google Scholar 

  51. Logan BE, Regan JM (2006) Microbial challenges and harnessing the metabolic activity of bacteria can provide energy for a variety of applications, once technical and cost obstacles are overcome. Environ Sci Technol 40:5172–5180

    Article  CAS  PubMed  Google Scholar 

  52. Tront JM, Plotze M, Hughes JB, Puzrin AM (2008) Microbial fuel cell biosensor for in situ assessment of microbial activity. Biosens Bioelectron 24:586–590

    Article  CAS  PubMed  Google Scholar 

  53. Kumlanghan A, Thavarungkul P, Kanatharana P (2007) Microbial fuel cell-based biosensor for fast analysis of biodegradable organic matter. Biosens Bioelectron 22:2939–2944

    Article  CAS  PubMed  Google Scholar 

  54. Kaur A et al (2014) Anode modification to improve the performance of a microbial fuel cell volatile fatty acid biosensor. Sens Actuators B Chem 201:266–273

    Article  CAS  Google Scholar 

  55. Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with a microbial biocathode. Environ Sci Technol 42:629–634

    Article  CAS  PubMed  Google Scholar 

  56. Clauwaert P, Verstraete W (2009) Methanogenesis in membraneless microbial electrolysis cells. Appl Microbiol Biotechnol 82:829–836

    Article  CAS  PubMed  Google Scholar 

  57. Cord-Ruwisch R, Lovley DR, Schink B (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64:2232–2236

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cheng S, Xing D, Call DF, Logan BE (2009) Direct biological conversion of electrical current into methane by electromethanogenesis. Environ Sci Technol 43:3953–3958

    Article  CAS  PubMed  Google Scholar 

  59. Villano M, Aulenta F, Ciucci T, Ferri A, Majone M (2010) Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour Technol 101:3085–3090

    Article  CAS  PubMed  Google Scholar 

  60. Zhang B, He Z (2013) Improving water desalination by hydraulically coupling an osmotic microbial fuel cell with a microbial desalination cell. J Membr Sci 441:18–24

    Article  CAS  Google Scholar 

  61. Ismail ZZ, Ibrahim MA (2015) Desalination of oilfield produced water associated with treatment of domestic wastewater and bio-electricity generation in microbial osmotic fuel cell. J Membr Sci 490:247–255

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to their colleagues of COMSATS Institute of Information Technology Lahore for critically reading the manuscript, for library work, typing, discussions and information about unpublished material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gugan Jabeen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabeen, G., Farooq, R. Microbial Fuel Cells and Their Applications for Cost Effective Water Pollution Remediation. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 87, 625–635 (2017). https://doi.org/10.1007/s40011-015-0683-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-015-0683-x

Keywords

Navigation