Skip to main content
Log in

In Vitro Activity and the Efficacy of Arbekacin, Cefminox, Fosfomycin, Biapenem Against Gram-Negative Organisms: New Treatment Options?

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

In recent years bacteria have shown much more potential to develop antimicrobial resistance. This mandates not only to the development of new drugs but also to the re-evaluation of already existing ones. Present study is sought to evaluate the in vitro activity of a few newer antibiotics which are not marketed in many countries at present. This study evaluates the in vitro activity of newer antibiotics i. e arbekacin, cefminox, fosfomycin and biapenem against clinical isolates Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. The minimum inhibition concentration of antibiotics was determined by the agar dilution method. The main finding of the present study is that fosfomycin was active against both E. coli and K. pneumoniae where as cefminox exhibited an insignificant intermediate level activity against both E. coli and K. pneumoniae. Biapenem was more active on E. coli than other tested organisms. Colistin showed inhibition for the entire organisms in present study. The present study suggests that colistin and fosfomycin are promising antibiotics for future use; however clinical trials are needed to confirm these findings and to evaluate potency of these four antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sahni RD, Balaji V, Varghese R, John J, Tansarli GS, Falagas ME (2013) Evaluation of fosfomycin activity against uropathogens in a fosfomycin-naive population in South India: a prospective study. Future Microbiol 8:675–680

    Article  CAS  PubMed  Google Scholar 

  2. Lakshmana Gowda K, Marie MAM, Al-Sheikh YA, John J, Gopalkrishnan S (2014) A 6-year surveillance of antimicrobial resistance patterns of Acinetobacter baumannii bacteremia isolates from a tertiary care hospital in Saudi Arabia during 2005–2010. Libyan J Med 9:24039

    PubMed  Google Scholar 

  3. Mohammed AM, Marie JJ, Lakshmana Gowda K, Gopalkrishnan S (2013) Molecular characterization of the β-lactamases in Escherichia coli and Klebsiella pneumoniae from a tertiary care hospital in Riyadh, Saudi Arabia. Microbiol Immunol 57:805–810

    Article  Google Scholar 

  4. Arunagiri K, Sekar B, Sangeetha G, John J (2012) Detection and characterization of metallo-beta-lactamases in Pseudomonas aeruginosa by phenotypic and molecular methods from clinical samples in a tertiary care hospital. West Indian Med J 6:778–783

    Google Scholar 

  5. Carlet J, Jarlier V, Harbarth S, Voss A, Goossens H, Pittet D, Participants of the 3rd World Healthcare-Associated Infections Forum (2012) Ready for a world without antibiotics? The pensières antibiotic resistance call to action. Antimicrob Resist Infect Control 1:11

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abraham S, Wong HS, Turnidge J, Johnson JR, Trott DJ (2014) Carbapenemase-producing bacteria in companion animals: a public health concern on the horizon. J Antimicrob Chemother 69:1155–1157

    Article  CAS  PubMed  Google Scholar 

  7. Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE (2010) Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis 10:43–50

    Article  CAS  PubMed  Google Scholar 

  8. Swaminathan S, Alangaden GJ (2010) Treatment of resistant enterococcal urinary tract infections. Curr Infect Dis Rep 12:455–464

    Article  PubMed  Google Scholar 

  9. Hwang JH, Lee JH, Moon MK, Kim JS, Won KS et al (2012) The usefulness of arbekacin compared to vancomycin. Eur J Clin Microbiol Infect Dis 31:1663–1666. doi:10.1007/s10096-011-1490-9

    Article  CAS  PubMed  Google Scholar 

  10. Iwashita Y, Enokiya T, Suzuki K, Yokoyama K, Yamamoto A, Ishikura K, Okuda M, Imai H (2013) Arbekacin treatment of a patient infected with a Pseudomonas putida producing a metallo-beta-lactamase. J Intensive Care 1:3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Morimoto K, Nakatani S, Kaji M, Kinoshita H, Fujimoto M, Hirata S, Ueda T, Tamate S, Yamazaki O (1994) Treatment with arbekacin of surgical infections by resistant strains of Staphylococcus aureus. Arbekacin Study Group. Jpn J Antibiot 47:826–836

    CAS  Google Scholar 

  12. Hoellman DB, Spangler SK, Jacobs MR, Appelbaum PC (1998) In vitro activities of cefminox against anaerobic bacteria compared with those of nine other compounds. Antimicrob Agents Chemother 42:495–501

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lerma M, Cebrian L, Gimenez M, Coronel P, Gimeno M et al (2008) betalactam susceptibility of Escherichia coli isolates from urinary tract infections exhibiting different resistance phenotypes. Rev Esp Quimioter 21:149–152

    CAS  PubMed  Google Scholar 

  14. Rajenderan S, Balaji V, Anandan S, Sahni RD, Tansarli GS, Falagas ME (2014) Determination of MIC distribution of arbekacin, cefminox, fosfomycin, biapenem and other antibiotics against gram-negative clinical isolates in south india: a prospective study. PLoS ONE 9(7):e103253. doi:10.1371/journal.pone.0103253

    Article  PubMed  PubMed Central  Google Scholar 

  15. Falagas ME, Roussos N, Gkegkes ID, Rafailidis PI, Karageorgopoulos DE (2009) Fosfomycin for the treatment of infections caused by Gram-positive cocci with advanced antimicrobial drug resistance: a review of microbiological, animal and clinical studies. Expert Opin Investig Drugs 18:921–944

    Article  CAS  PubMed  Google Scholar 

  16. Winn W, Allen S, Janda W, Koneman E, Procop G (2006) Koneman’s color atlas and textbook of diagnostic microbiology, chap. 6: the Enterobacteriaceae, 6th edn. Lippincott Williams & Wilkins, Baltimore, pp s.213–s.293

    Google Scholar 

  17. Pandian R, Brahmadathan KN, Mathai E. (2001) Koshi’s manual of diagnostic procedures in medical microbiology and immunology/serology. Faculty, Department of Clinical Microbiology, Christian Medical College, Vellore. All India Press, Pondicherry, pp 52–56

  18. Weisberg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    Google Scholar 

  19. Clinical and Laboratory Standards Institute (2009) Performance standards for antimicrobial susceptibility testing; twenty-second informational supplement. Wayne

  20. Pandian R, Brahmadathan KN, Mathai E (2001) Throat and Nose. In: Kang HP, Dunne WM (eds) Stability of repetitive-sequence PCR Myer’s and Koshi’s manual of diagnostic procedures in medical microbiology and immunology/serology. Faculty, Department of Clinical Microbiology, Christian Medical College, Vellore, India. All India Press, Pondicherry, pp 52–56

  21. Clinical and Laboratory Standards Institute (2011) Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement. M100-S21 ed, Wayne

  22. Goldstein EJI, Citron DM, Tyrrell KL, Merriam CV (2013) In vitro activity of Biapenem plus RPX7009, a carbapenem combined with a serine β-lactamase inhibitor, against anaerobic bacteria. Antimicrob Agents Chemother 57:2620–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bassetti M, Ginocchio F, Mikulska M (2011) New treatment options against gram-negative organisms. Crit Care 15:215

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hwang JH, Lee JH, Moon MK, Kim JS, Won KS, Lee CS (2013) The efficacy and safety of arbekacin and vancomycin for the treatment in skin and soft tissue MRSA infection: preliminary study. Infect Chemother 45:62–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reffert JL, Smith WJ (2014) Fosfomycin for the treatment of resistant gram-negative bacterial infections: insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. doi:10.1002/phar.1434

    PubMed  Google Scholar 

  26. de Cueto M, López L, Hernández JR, Morillo C, Pascual A (2006) In vitro activity of fosfomycin against extended-spectrum-β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: comparison of susceptibility testing procedures. Antimicrob Agents Chemother 50:368–370

    Article  PubMed  PubMed Central  Google Scholar 

  27. Maraki S, Samonis G, Rafailidis PI, Vouloumanou EK, Mavromanolakis E, Falagas ME (2009) Susceptibility of urinary tract bacteria to fosfomycin. Antimicrob Agents Chemother 53:4508–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lakshmana Gowda K, John J, Marie MA, Sangeetha G, Bindurani SR (2013) Isolation and characterization of quorum-sensing signalling molecules in Pseudomonas aeruginosa isolates recovered from nosocomial infections. APMIS 121:886–889

    Article  PubMed  Google Scholar 

  29. Lakshmana Gowda K, John J, Marie MAM, Gopalkrishnan S, Pradeep CS, Bindu Rani SR (2012) Detection of pan-amino glycoside-resistant gram negative bacteria using a molecular method. South Asian J Exp Biol 2:256–258

    Google Scholar 

Download references

Acknowledgments

The researchers express their gratitude and appreciation to King Abdul-Aziz City for Science and Technology for providing grant for this project.

Conflict of interest

The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Ali M. Marie.

Additional information

Mohammed Ali M. Marie and Lakshmana Gowda Krishnappa contributed equally towards this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marie, M.A.M., Krishnappa, L.G. & Lory, S. In Vitro Activity and the Efficacy of Arbekacin, Cefminox, Fosfomycin, Biapenem Against Gram-Negative Organisms: New Treatment Options?. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 86, 749–755 (2016). https://doi.org/10.1007/s40011-015-0522-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-015-0522-0

Keywords

Navigation