Skip to main content

Advertisement

Log in

Abstract

Cyanobacteria belong to a diverse group of photosynthetic prokaryotes. They are increasingly being used as biofertilizer in agriculture due to their role as diazotrophs, ameliorant for soil physical and chemical properties, establishing proficiency in diverse soil ecologies, and their ability to compete with native flora and fauna. These are producers of a large number of biologically active/biocidal substances. However, most researches concerning them and their derived products focus on pharmaceutical applications and their use in agriculture is often regarded as a secondary goal. Existing literature suggests that cyanobacteria may play a potential role in crop protection. Thus, this is the first review of its kind that focuses on the potential application of cyanobacteria for crop protection. Commercial development of cyanobacterial compounds for non-biomedical applications includes herbicides, algicides, nematocides and insecticides. Bioactive compounds like, hapalindoles from Fischerella, calothrixins from Calothrix, cyanobacterins LU-1 and LU-2 from Nostoc and γ–lactone from Scytonema are proposed to possess allelopathic effect. Cyanobacteria show significant biocidal activity against important agricultural insect-pests. The biomass extract of Nostoc can kill Helicoverpa armigera larvae at a dose of 2.20 mg cm−2. The antimicrobial substances produced include nostocyclyne A, nosto fungicidin, nostocin A, Ambigol A and B, hapalindoles, tjipanazoles and scytophycins and exhibit fungicidal activity against important plant pathogens. These biocontrol agents provide multiple benefits and act as useful pointers for improving cultivation practices and establishment of plants in diverse inhospitable/barren habitats. They depict a promising multifaceted bioinoculants in organic farming practices popular in present day agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang WJ, Jiang FB, Ou JF (2011) Global pesticide consumption and pollution: with China as a focus. Proc Int Acad Ecol Env Sci 1:125–144

    CAS  Google Scholar 

  2. Saxena S, Pandey AK (2001) Microbial metabolites as eco-friendly agrochemicals for the next millennium. Appl Microbiol Biotechnol 55:395–403

    Article  CAS  PubMed  Google Scholar 

  3. Schopf JW (2000) The fossil record: tracing the roots of the cyanobacterial lineage. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 13–35

    Google Scholar 

  4. Stal L (2007) Cyanobacteria. Algae Cyanobacteria Extreme Environ 11:659–680

    Article  Google Scholar 

  5. Singh NK, Dhar DW (2007) Nitrogen and phosphorous scavenging potential in microalgae. Ind J Biotechnol 6:52–56

    CAS  Google Scholar 

  6. Aziz M, Hashem MA (2003) Role of cyanobacteria in improving fertility of saline soil. Pakistan J Biol Sci 6:1751–1752

    Article  Google Scholar 

  7. Dhar DW, Saxena S, Singh NK (2009) BGA biofertilizer: production, constraints and future perspectives. In: Mallik CP, Wadhwani C, Kaur B (eds) Crop breeding and biotechnology. Pointer Publishers, Jaipur, pp 209–226

    Google Scholar 

  8. Kaushik BD (2004) Use of blue-green algae and Azolla biofertilizers in rice cultivation and their influence on soil properties. In: Jain PC (ed) Microbiology and biotechnology for sustainable development. CBS Publishers & Distributors, New Delhi, pp 166–184

    Google Scholar 

  9. Dhar DW, Prasanna R, Singh BV (2007) Comparative performance of three carrier based blue green algal biofertilizers for sustainable rice cultivation. J Sustain Agric 30:41–50

    Article  Google Scholar 

  10. Singh NK, Dhar DW (2010) Cyanobacterial reclamation of salt-affected soil. In: Lichtfouse E (ed) Genetic engineering, biofertilisation, soil quality and organic farming. Springer: Dordrecht, Heidelberg, London, New York, Sustainable Agriculture Reviews 4:243–275

  11. Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC (2001) Marine cyanobacteria-a profile source of natural products. Tetrahedron 57:9347–9377

    Article  CAS  Google Scholar 

  12. Gervick WM, Tan LT, Siachitta N (2001) Nitrogen-containing metabolites from marine cyanobacteria. In: Cordell G (ed) The alkaloids. Academic Press, San Diego, pp 75–184

    Google Scholar 

  13. Metting B, Pyne JW (1986) Biologically active compounds from microalgae. Enz Microbiol Tech 8:386–394

    Article  CAS  Google Scholar 

  14. Biondi N, Piccardi R, Margheri MC, Rodolfi L, Smith GD, Tredici MR (2004) Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl Environ Biotechnol 70:3313–3320

    CAS  Google Scholar 

  15. Singh NK, Saxena S, Tiwari ON, Dhar DW (2008) Cyanobacterial toxins and public health issues. In: Khattar JIS, Singh DP, Kaur G (eds) Algal biology and biotechnology. I.K. International Publishing House Pvt. Ltd., New Delhi, pp 179–203

    Google Scholar 

  16. Singh NK, Dhar DW (2013) Cyanotoxins, related health hazards on animals and their management: A Review. Ind J Ani Sci 83:1111–1127

    CAS  Google Scholar 

  17. Golakoti T, Yoshida WY, Chaganty S, Moore RE (2000) Isolation and structures of nostopeptolides A1, A2 and A3 from the cyanobacterium Nostoc sp. GSV224. Tetrahedron 56:9093–9102

    Article  CAS  Google Scholar 

  18. Mundt S, Kreitlow S, Nowotny A, Effmert U (2001) Biochemical and Pharmacological investigations of selected cyanobacteria. Intl J Hygiene Env Health 203:327–334

    Article  CAS  Google Scholar 

  19. Kumar K, Lakshmanan A, Kannaiyan S (2005) Bioregulatory and therapeutic effects of blue green algae. Indian J Microbiol 43:9–16

    Google Scholar 

  20. Vardi A, Schatz D, Beeri K, Motro U, Sukenik A, Levine A, Kaplan A (2002) Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr Biol 12:1767–1772

    Article  CAS  PubMed  Google Scholar 

  21. Ganter M, Berry JP, Thomas S, Wang M, Perez R, Rein K (2008) Allelopathic activity among cyanobacteria and microalgae isolated from Florida freshwater habitats. FEMS Microbiol Lett 64:55–64

    Article  Google Scholar 

  22. Doan NT, Stewart PR, Smith GD (2001) Inhibition of bacterial RNA polymerase by the cyanobacterial metabolites 12-Epi-Hapalindole E Isonitrile and Calothrixin A. FEMS Microbiol Lett 196:135–139

    Article  CAS  PubMed  Google Scholar 

  23. Doan NT, Rickards RW, Rothschild JM, Smith GD (2000) Allelopathic Actions of the Alkaloid 12-Epi-Hapalindole E Isonitrile and Calothrixin A from Cyanobacteria of the Genera Fischerella and Calothrix. J Appl Phycol 12:409–416

    Article  CAS  Google Scholar 

  24. Smith GD, Doan NT (1999) Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J Appl Phycol 11:337–344

    Article  CAS  Google Scholar 

  25. Juttner F, Todorova AK, Walch N, von Philipsborn W, Nostocyclamide M (2001) A cyanobacterial cyclic peptide with allelopathic activity from Nostoc 31. Phytochem 57:613–619

    Article  CAS  Google Scholar 

  26. Hirata K, Yoshitomi S, Dwi S, Iwabe O, Mahakhant A, Polchai J, Miyamoto K (2003) Bioactivities of nostocine a produced by a freshwater cyanobacterium Nostoc spongiaforme TISTR 8169. J Biosci Bioeng 95:512–517

    Article  CAS  PubMed  Google Scholar 

  27. Becher PG, Beuchat J, Gademann K, Juttner F (2005) Nostocarboline: isolation and synthesis of a new cholinesterase inhibitor from Nostoc 78-12A. J Nat Prod 68:1793–1795

    Article  CAS  PubMed  Google Scholar 

  28. Mason CP, Edwards KR, Carlson RE, Pignatello J, Gleason FK, Wood JM (1982) Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni. Science 215:400–402

    Article  CAS  PubMed  Google Scholar 

  29. Berry JP, Gantar M, Gibbs PDL, Schmale MC (2007) The Zebrafish (Danio rerio) embryo as a moldel system for identification and characterization of developmental toxins from marine and freshwater microalgae. Comp Biochem Physiol Part C Pharmacol Toxicol 145:61–72

    Article  Google Scholar 

  30. Yanni YG, Abdallah FE (1990) Role of algalization in rice growth, yield and incidence of infestation with the stem borer Chilo agamemnon Bles and the leaf miner Hydrellia prosternalis Deeming in the Nile Delta. World J Microbiol Biotechnol 6:383–389

    Article  CAS  PubMed  Google Scholar 

  31. Gol’din E (2012) Biologically active microalgae and cyanobacteria in nature and marine biotechnology. Turk J Fish Aquatic Sci 12:423–427

    Google Scholar 

  32. Vazquez-Martinez MG, Rodríguez MH, Arrendondo-Jimenez JI, Mendez-Sanchez JD, Bond-Compean JG, Gold-Morgan M (2002) Cianobacteria associated with Anopheles albimanus (Dipter: Culcidae) larval habitats in Southern Mexico. J Med Entomol 39:825–832

    Article  PubMed  Google Scholar 

  33. Boussiba S, Wu X-Q, Ben-Dov E, Zarka A, Zaritsky A (2000) Nitrogen-fixing cyanobacteria as gene delivery system for expressing mosquitocidal toxins of Bacillus thuringiensis ssp. israelensis. J Appl Phycol 12:461–467

    Article  CAS  Google Scholar 

  34. Kiviranta J, Abdel-Hameed A (1994) Toxicity of the blue-green alga Oscillatoria agardhii to the mosquito Aedes aegypti and the shrimp Artemia salina. World J Microbiol Biotechnol 10:517–520

    Article  CAS  PubMed  Google Scholar 

  35. Harada KI, Suomalainen M, Uchida H, Masul H, Ohmura K, Kiviranta J, Niku-Paavola ML, Ikemoto T (2000) Insecticidal compounds against mosquito larvae from Oscillatoria agardhii Strain 27. Environ Toxicol 15:114–119

    Article  CAS  Google Scholar 

  36. Nassar MMI, Hafez ST, Nagaty IM, Khalaf SAA (1999) The insecticidal activity of cyanobacteria against four insects, two of medical importance and two agricultural pests with references to the action on albino mice. J Egypt Soc Parasitol 29:939–949

    CAS  PubMed  Google Scholar 

  37. Angsuthanasombat C, Panyim S (1989) Biosynthesis of 130-kilodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol 55:2428–2430

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Rao DR, Thangavel C, Kabilan L, Suguna S, Mani TR, Shanmugasundaram S (1999) Larvicidal properties of the cyanobacterium Westiellopsis sp. against mosquito vectors. Trans Royal Soc Trop Med Hyg 93:232–234

    Article  CAS  Google Scholar 

  39. Zaritsky A, Ben-Dov E, Borovsky D, Boussiba S, Einav M, Gindin G, Horowitz AR, Kolot M, Melnikov O, Mendel Z, Yagil E (2010) Transgenic organisms expressing genes from Bacillus thuringiensis to combat insect pests. Bioeng Bugs 1:341–344

    Article  PubMed Central  PubMed  Google Scholar 

  40. Tandeau de Marsac N, de la Torre F, Szulmajster J (1987) Expression of the larvicidal gene of Bacillus sphaericus 159 M in the cyanobacterium Anacystis nidulans. Mol Gen Genet 209:396–398

    Article  CAS  PubMed  Google Scholar 

  41. Juttner F, Wessel HP (2003) Isolation of di(hydroxymethyl) dihydroxy- pyrrolidine from the cyanobacterial genus Cylindrospermum that effectively inhibits digestive glucosidases of aquatic insects and crustacean grazers. J Phycol 39:26–32

    Article  Google Scholar 

  42. Becher PG, Juttner F (2005) Insecticidal compounds of the biofilm forming cyanobacterium Fischerella sp. (ATCC 43239). Environ Toxicol 20:363–372

    Article  CAS  PubMed  Google Scholar 

  43. Becher PG, Keller S, Jung G, Sussmuth RD, Juttner F (2007) Insecticidal activity of 12-epi-hapalindole J isonitrile. Phytochem 68:2493–2497

    Article  CAS  Google Scholar 

  44. Rodriguez V, Mori B, Dorr FA, Belo CAD, Colepicolo P, Pinto E (2012) Effects of a cyanobacterial extract containing anatoxin-a(s) on the cardiac rhythm of Leurolestes circunvagans. Brazilian J Pharma 22:775–781

    CAS  Google Scholar 

  45. Khairy HM, El-Kassas HY (2012) Active substance from some blue green algal species used as antimicrobial agents. African J Biotechnol 9:2789–2800

    Google Scholar 

  46. de Caire GZ, de Cano MS, de Mule MCZ, de Halperin DR (1990) Antimycotic products from the cyanobacterium Nostoc muscorum against Rhizoctonia solani. Phyton 51:1–4

    Google Scholar 

  47. de Caire GZ, de Cano MS, de Mule MCZ, de Halperin DR, Galvagno M (1987) Action of cell-free extracts and extracellular products of Nostoc muscorum on growth of Sclerotinia sclerotiorum. Phyton 47:43–46

    Google Scholar 

  48. de Cano MMS, de Mule MCZ, de Caire GZ, de Halperin DR (1990) Inhibition of Candida albicans and Staphylococcus aureus by phenolic compounds from the terrestrial cyanobacterium Nostoc muscorum. J Appl Phycol 2:79–81

    Article  Google Scholar 

  49. Zulpa G, Zaccaro MC, Boccazzi F, Parada JL, Storni M (2003) Bioactivity of intra and extracellular substances from cyanobacteria and lactic acid bacteria on “wood blue stain” fungi. Biol Control 27:345–348

    Article  Google Scholar 

  50. Tassara C, Zaccaro MC, Storni MM, Palma M, Zulpa G (2008) Biological control of lettuce white mold with cyanobacteria. Int J Agri Biol 10:487–492

    Google Scholar 

  51. Osman MEH, El-Sheekh MM, Metwally MA, Ismail AEA, Ismail MM (2011) Antagonistic activity of some fungi and cyanobacteria species against Rhizoctonia solani. Int J Plant Pathol 2:101–114

    Article  Google Scholar 

  52. Tantawy STA (2011) Biological potential of cyanobacterial metabolites against some soil pathogenic fungi. J Food Agri Environ 9:663–666

    CAS  Google Scholar 

  53. Hagmann L, Juttner F (1996) Fischerellin-A, a novel photosystem-ll inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity. Tetrahedron Lett 37:6539–6542

    Article  CAS  Google Scholar 

  54. Kim J, Kim JD (2008) Inhibitory effect of algal extracts on mycelia growth of the tomato-wilt pathogen, Fusarium oxysporum f. sp. lycopersici. Mycobiol 36:242–248

    Article  Google Scholar 

  55. Rizk MA (2006) Growth activities of the sugarbeet pathogens Sclerotium rolfsii Sacc. Rhizoctonia solani Kuhn. and Fusarium verticillioides Sacc. under cyanobacterial filtrates stress. Plant Pathogol J 5:212–215

    Article  Google Scholar 

  56. Singh IP, Milligan KE, Gerwick WH (1999) Tanikolide, a toxic and antifungal lactone from the marine cyanobacterium Lyngbya majuscule. J Natl Prod 62:1333–1335

    Article  CAS  Google Scholar 

  57. Alwathnani HA, Perveen K (2012) Biological control of Fusarium wilt of tomato by antagonist fungi and cyanobacteria. African J Biotechnol 11:1100–1105

    Google Scholar 

  58. Bonjouklian R, Smitka TA, Doolin LE, Molloy RM, Debono M, Shaffer SA, Moore E, Stewart JB, Patterson GML (1991) Tjipanazoles, new antifungal agents from the blue-green algae Tolypothrix tjipanasensis. Tetrahedron 47:7739–7750

    Article  CAS  Google Scholar 

  59. Ozdemir G, Karabay NU, Dalay MC, Pazarbasi B (2004) Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytother Res 18:754–757

    Article  CAS  PubMed  Google Scholar 

  60. Thillairajasekar K, Duraipandiyan V, Perumal P, Ignacimuthu S (2009) Antimicrobial activity of Trichodesmium erythraeum (Ehr.) (microalgae) from South East coast of Tamil Nadu, India. Int J Integr Biol 5:167–170

    CAS  Google Scholar 

  61. Sathiyamoorthy P, Shanmugasundaram S (1996) Preparation of cyanobacterial peptide toxin as a biopesticide against cotton pests. Appl Microbiol Biotechnol 46:511–513

    Article  CAS  Google Scholar 

  62. Manasherob R, Otieno-Ayayo ZN, Ben-Dov E, Miaskovsky R, Boussiba S, Zaritsky A (2003) Enduring toxicity of transgenic Anabaena PCC 7120 expressing mosquito larvicidal genes from Bacillus thuringiensis ssp. israelensis. Environ Microbiol 5:997–1001

    Article  CAS  PubMed  Google Scholar 

  63. Jaki B, Heilmann J, Linden A, Volger B, Sticher O (2000) Novel extra cellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J Nat Prod 63:339–343

    Article  CAS  PubMed  Google Scholar 

  64. Kellam SJ (1988) Results of a large scale screening programme to detect antifungal activity from marine and freshwater microalgae in laboratory culture. J Br Phycol 23:45–47

    Article  Google Scholar 

  65. Falch BS, König GM, Wright AD, Sticher O, Angerhofer CK, Pezzuto JM, Bachmann H (1995) Biological activities of cyanobacteria: evaluation of extracts and pure compounds. Planta Med 61:321–328

    Article  CAS  PubMed  Google Scholar 

  66. Nagle DG, Wedge DE (2002) Chemical Ecology of Plants. In: Malik B (ed) Allelopathy in Aquatic and Terrestrial Ecosystems. Birkhauser Verlag, Switzerland, pp 7–32

    Chapter  Google Scholar 

  67. Volk BR, Furkert HF (2006) Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol Res 161:180–186

    Article  CAS  PubMed  Google Scholar 

  68. Sabin M, Susann K, Jansen R (2003) Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051. J App Phycol 15:263–267

    Article  Google Scholar 

  69. Pandey U, Pandey J, Pandey V (2002) Antibacterial properties of cyanobacteria: A cost effective ecofriendly approach to control bacteria leaf spot disease of Chilli. Curr Sci 82:3–4

    Google Scholar 

  70. Kulik MM (1995) The potential for using cyanobacteria (blue green algae) and algae in the biological control of plant pathogenic bacteria and fungi. Eur J Plant Pathol 101:585–599

    Article  Google Scholar 

  71. Holajjer P, Kamra A, Gaur HS, Dhar DW (2012) In vitro nematicidal activity of a terrestrial cyanobacterium, Synechococcus nidulans, towards plant-parasitic nematodes. Nematol 14:85–92

    Article  Google Scholar 

  72. Holajjer P, Kamra A, Gaur HS, Dhar DW (2013) Evaluation of heterocystous and non heterocystous cyanobacterial species for nematicidal activity. Ind J Nematol 43:34–39

    Google Scholar 

  73. Pushparaj B, Pelosi E, Caroppo S (2000) Effect of Nodularia harveyana biomass on the incidence of root-knot nematode (Meloidogyne incognita) in tomato. J Appl Phycol 12:489–492

    Article  Google Scholar 

  74. Sharma HK, Gaur HS, Singh DV, Dhar DW (2007) Bionematicidal potential of ten species of cyanobacteria against root-knot nematode, Meloidogyne incognita. Int J Nematol 17:35–40

    Google Scholar 

  75. Sharma HK, Gaur HS (2008) Hatch inhibition of Meloidogyne incognita by aqueous extracts and exudates of five species of cyanobacteria. Nematologia Mediterranea 36:99–106

    Google Scholar 

  76. Dutta TK, Kamra A, Gupta AL, Gaur HS, Dhandapani A (2007) Toxicity of cyanobacterium, Synechococcus (Anacystis) nidulans extracts on plant-parasitic nematodes. Int J Nematol 17:137–143

    Google Scholar 

  77. Rahman MA, Vijaya M, Chiranjeevi C (2003) Performance of soil solarization, captan and bio-control agents in management of damping-off disease in Solanaceous vegetable nursery. Ind J Plant Prot 31:71–75

    Google Scholar 

  78. Konkanthimath VS, Ramesh R (2004) Fungal and bacterial antagonists for the management of damping-off in Brinjal. Indian J Plant Prot 32:80–84

    Google Scholar 

  79. Misra S, Kaushik BD (1989) Growth-promoting substances of cyanobacteria. I. Vitamins and their influence on rice plant. Pro Ind Sci Acad B 55:295–300

    CAS  Google Scholar 

  80. Sergeeva E, Liaimer A, Bergman B (2002) Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta 215:229–238

    Article  CAS  PubMed  Google Scholar 

  81. Falch BS (1996) Was steckt in cyanoabakterien? Pharm Unserer Zeit 25:311–321

    Article  CAS  PubMed  Google Scholar 

  82. Jaki B, Orjala J, Sticher O (1999) A novel extracelular diterpenoides with antibacterial activity from the cyanobacterium, Nostoc commune. J Nat Prod 62:502–503

    Article  CAS  PubMed  Google Scholar 

  83. Bagchi SN, Palod A, Chauhan VS (1990) Algicidal properties of a bloom-forming blue-green alga, Oscillatoria sp. J Basic Microbiol 30(1):21–29

    Article  Google Scholar 

  84. Bagchi SN (1995) Structure and Site of Action of an Algicide from a Cyanobacterium, Oscillatoria late-virens. J Plant Physiol 146(3):372–374

    Article  CAS  Google Scholar 

  85. Todorova AK, Juettner F, Linden A (1995) Nostoeyclamide: a new macrocyclic, thiazole-containing allelochemical from Nostoc sp. 31 (cyanobacteria). J Org Chem 60:7891–7895

    Article  CAS  Google Scholar 

  86. Verdier Pinard P, Sitachitta N, Rossi JV (1999) Biosynthesis of radiolabeled curacin A and its rapid and apparently irreversible binding to the colchicines site of tubulin. Arch Biochem Biophys 370:51–58

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors humbly acknowledge the assistance provided by the Vice Chancellor, S.D. Agricultural University (Gujarat, India) and the Director, Indian Agricultural Research Institute, New Delhi (India) for preparation of this manuscript. This article does not attract any conflict of interest among the authors/institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirbhay Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N.K., Dhar, D.W. & Tabassum, R. Role of Cyanobacteria in Crop Protection. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 86, 1–8 (2016). https://doi.org/10.1007/s40011-014-0445-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-014-0445-1

Keywords

Navigation