Skip to main content

Advertisement

Log in

Effect of Fertilizer Loaded Nanoclay/Superabsorbent Polymer Composites on Nitrogen and Phosphorus Release in Soil

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

A leaching study was conducted to evaluate effectiveness of fertilizer loaded nanoclay/superabsorbent polymer composites (NCPCs) as a slow release carrier of nutrients. Three types of NCPCs (I, II and III) synthesized from Kaolinite, Illite and Smectite dominated nanoclays, respectively were loaded separately with di-ammonium phosphate (DAP) and urea solution. Release of P and total mineral N from NCPCs loaded with DAP and urea, respectively, were compared with corresponding conventional fertilizer (CF). Release of P and N were studied independently with a factorial CRD experiment under four types of fertilizer (NCPC-I, NCPC-II, NCPC-III and CF) in combination with three types of soils (Alfisol, Inceptisol and Vertisol). Cumulative P and total mineral N recovery significantly increased under NCPC-I (+57.3 and +16.2 %, respectively), NCPC-II (+55.2 and +15.4 %, respectively) and NCPC-III (+88.3 and +27.3 %, respectively) over CF. Reduced nutrient losses (P fixation and N volatilization) under NCPC treated soils owing to their slow release property resulted in higher recovery. Moreover, NCPC doped with smectite type of clay (NCPC-III) endowed with better slow release property than NCPC-I and NCPC-II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ladha JK, Pathak H, Krupnik TJ, Six J, Van Kessel C (2005) Efficiency of fertilizer nitrogen in cereal production: retrospect and prospects. Adv Agron 87:85–156. doi:10.1016/S0065-2113(05)87003-8

    CAS  Google Scholar 

  2. Malhi SS, Haderlein LK, Pauly DG, Johnston AM (2002) Improving fertilizer phosphorus use efficiency. Better Crop 86:8–9

    Google Scholar 

  3. Li Y, Li X, Zhou L, Zhu X, Li B (2004) Study on the synthesis and application of salt-resisting polymeric hydrogels. Polym Adv Technol 15:34–38. doi:10.1002/pat.444

    Article  CAS  Google Scholar 

  4. Anupama Kumar R, Jat ML, Parmar BS (2007) Performance of a new superabsorbent polymer on seedling and post planting growth and water use pattern of chrysanthemum grown under controlled environment. Acta Hort 74:43–50

    Google Scholar 

  5. Singh A, Sarkar DJ, Singh AK, Parsad R, Kumar A, Parmar BS (2011) Studies on novel nanosuperabsorbent composites: swelling behaviour in different environments and effect on water absorption and retention properties of sandy loam soil and soil-less medium. J Appl Polym Sci 120:1448–1458. doi:10.1002/app.33263

    Article  CAS  Google Scholar 

  6. Zhan F, Liu M, Guo M, Wu L (2004) Preparation of superabsorbent polymer with slow-release phosphate fertilizer. J Appl Polym Sci 92:3417–3421. doi:10.1002/app.20361

    Article  CAS  Google Scholar 

  7. Guo M, Liu M, Hu Z, Zhan F, Wu L (2005) Preparation and properties of a slow release NP compound fertilizer with superabsorbent and moisture preservation. J Appl Polym Sci 96:2132–2138. doi:10.1002/app.21140

    Article  CAS  Google Scholar 

  8. Liang R, Liu M, Wu L (2007) Controlled release NPK compound fertilizer with the function of water retention. React Funct Polym 67:769–779. doi:10.1016/j.reactfunctpolym.2006.12.007

    Article  CAS  Google Scholar 

  9. Zhong K, Lin Z, Zheng X, Jiang G, Fang Y, Mao X, Liao Z (2013) Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers. Carbohydr Polym 92:1367–1376. doi:10.1016/j.carbpol.2012.10.030

    Article  CAS  PubMed  Google Scholar 

  10. Mohan YM, Murthy PSK, Raju KM (2005) Synthesis, characterization and effect of reaction parameters on swelling properties of acrylamide-sodium methacrylate superabsorbent copolymers. React Funct Polym 63:11–26. doi:10.1016/j.reactfunctpolym.2005.01.005

    Article  CAS  Google Scholar 

  11. Liang R, Liu M (2007) Preparation of poly(acrylic acid-co-acrylamide)/kaolin and release kinetics of urea from it. J Appl Polym Sci 106:3007–3017. doi:10.1002/app.26919

    Article  CAS  Google Scholar 

  12. Lee WF, Yang LG (2004) Superabsorbent polymeric materials. XII. Effect of montmorillonite on water absorbency for poly(sodium acrylate) and montmorillonite nanocomposite superabsorbents. J Appl Polym Sci 92:3422–3429. doi:10.1002/app.20370

    Article  CAS  Google Scholar 

  13. Li A, Wang A, Chen J (2004) Studies on poly(acrylic acid)/attapulgite superabsorbent composites. II. Swelling behaviour of super absorbent composites in saline solutions and hydrophilic solvent mixtures. J Appl Polym Sci 94:1869–1876. doi:10.1002/app.20850

    Article  CAS  Google Scholar 

  14. Lin J, Wu J, Yang Z, Pu M (2001) Synthesis and properties of poly(acrylic acid)/mica superabsorbent nanocomposite. Macromol Rapid Commun 22:422–424. doi: 10.1002/1521-3927(20010301)22:6<422::AID-MARC422>3.0.CO;2-R

  15. Zheng Y, Li P, Zhang J, Wang A (2007) Study on superabsorbent composites. XVI: synthesis, characterization and swelling behaviours of poly(sodium acrylate)/vermiculite superabsorbent composites. Eur Poly J 43:1691–1698. doi:10.1016/j.eurpolymj.2007.02.023

    Article  CAS  Google Scholar 

  16. Sarkar S, Datta SC, Biswas DR (2014) Synthesis and characterization of nanoclay–polymer composites from soil clay with respect to their water-holding capacities and nutrient-release behavior. J Appl Poly Sci 131(6): doi: 10.1002/app.39951

  17. Jackson ML (1973) Soil chemical analysis. Prentice Hall of India Pvt. Ltd., New Delhi

    Google Scholar 

  18. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  19. Olsen SR, Cole CV, Watanable FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ 9398:1–19

    Google Scholar 

  20. Waugh DL, Fitts JW (1966) Soil test interpretation studies: laboratory and plotted, plant. Tech. Bull, North Carolina State Agricultural Experiment Station, (ISTP Series) No. 3

  21. Keeney DR, Nelson DW (1982) Nitrogen inorganic forms. In: Page AL, Miller RH, Keeney DR (eds.) Methods of Soil Analysis. Agronomy monograph 9 Part 2, 2nd edn. American Society of Agronomy, Madison Wisconsin, pp 643–698

  22. Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. Wiley, New York

    Google Scholar 

  23. Shaviv A, Schnek M (1989) Reactions of a granulated super-phosphate and ammonium sulphate mixtures in calcareous soils. Geoderma 44:17–27

    Article  CAS  Google Scholar 

  24. Barrow NJ (1985) Comparing the effectiveness of fertilizers. Fert Res 8:85–91

    Article  Google Scholar 

  25. Fenn LB, Hossner RL (1985) Ammonia volatilisation from ammonia and ammonium forming fertilizers. Adv Soil Sci 1:123–169

    CAS  Google Scholar 

  26. Christianson CB, Carter MF, Holt LS (1988) Mineralization and nitrification of ureaform fertilizers. Fert Res 17:85–95

    Article  Google Scholar 

  27. Shoji S, Delgado J, Mosier A, Miura Y (2001) Use of controlled release fertilizers and nitrification inhibitors to increase nitrogen use efficiency and to conserve air and water quality. Commun Soil Sci Plant Anal 32:1051–1070. doi:10.1081/CSS-100104103

    Article  CAS  Google Scholar 

  28. Zhang J, Wang A (2007) Study on superabsorbent composites. XI: synthesis, characterization and swelling behaviours of polyacrylamide/clay composites based on various clays. React Funct Polym 67:737–745. doi:10.1016/j.reactfunctpolym.2007.05.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The senior author is grateful to Indian Agricultural Research Institute (IARI), New Delhi for providing financial support as Senior Research Fellowship (SRF) during his research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Datta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Datta, S.C. & Biswas, D.R. Effect of Fertilizer Loaded Nanoclay/Superabsorbent Polymer Composites on Nitrogen and Phosphorus Release in Soil. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 85, 415–421 (2015). https://doi.org/10.1007/s40011-014-0371-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-014-0371-2

Keywords

Navigation