Skip to main content
Log in

A Research Review on Hyperspectral Data Processing and Analysis Algorithms

  • Review Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

Recent advances in the sensors technology for imaging spectroscopy coupled with high computing power, raise the demand to develop the algorithms for processing and analysis of hyperspectral data for various applications. Well known techniques and algorithms are available for processing multispectral data in the literature. Researchers tried to use similar approaches for hyperspectral data analysis and succeeded up to some extent. Several techniques for atmospheric correction, dimensionality reduction, endmember extraction and classification has been developed and reported accordingly. To process and evaluate the hyperspectral data for domain applications require generalized framework. This article critically reviews most of the existing hyperspectral data processing and analysis approaches and gives generalized framework. Which offers considerate view for future potential and focuses emerging challenges in the development of robust algorithms for hyperspectral data processing and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shippert P (2004) Why use hyperspectral imagery? Photogramm Eng Remote Sens 70(4):377–396

    Google Scholar 

  2. Mohan BK, Porwal A (2015) Hyperspectral image processing and analysis. Curr Sci 108:833–841

    Google Scholar 

  3. Green R, Landeen S, McCubbin I, Thompson D, Bue B (2015) Airborne visible/infrared imaging spectrometer next generation (AVIRIS-NG), 1st edn. [PDF] JPL, California Institute of Technology. http://vedas.sac.gov.in:8080/aviris/pdf/20150726_AVRISINGDataGuide_v4.pdf. Accessed 1 July 2017

  4. Kruse FA (2004) Comparison of ATREM, ACORN, and FLAASH atmospheric corrections using low-altitude AVIRIS data of Boulder, CO. In: Summaries of 13th JPL airborne geoscience workshop, Jet Propulsion Lab, Pasadena, CA

  5. Tuominen J, Lipping T (2011) Atmospheric correction of hyperspectral data using combined empirical and model based method. In: Proceedings of the 7th European association of remote sensing laboratories SIG-imaging spectroscopy workshop, Edinburgh, Scotland, UK, vol 1113

  6. Ben-Dor E, Kindel B, Goetz AFH (2004) Quality assessment of several methods to recover surface reflectance using synthetic imaging spectroscopy data. Remote Sens Environ 90(3):389–404

    Article  ADS  Google Scholar 

  7. Kumar MV, Yarrakula K (2017) Comparison of efficient techniques of hyper-spectral image preprocessing for mineralogy and vegetation studies

  8. Thompson DR, Roberts DA, Gao BC, Green RO, Guild L, Hayashi K, Kudela R, Palacios S (2016) Atmospheric correction with the Bayesian empirical line. Opt Express 24(3):2134–2144

    Article  ADS  Google Scholar 

  9. San A BT, Suzen B ML (2010) Evaluation of different atmospheric correction algorithms for EO-1 Hyperion imagery. Int Arch Photogram Remote Sens Spat Inf Sci 38:392–397

    Google Scholar 

  10. Bernstein LS et al (2012) Quick atmospheric correction code: algorithm description and recent upgrades. Opt Eng 51(11):111719-1

    Article  ADS  Google Scholar 

  11. Pervez W, Khan SA (2015) Hyperspectral hyperion imagery analysis and its application using spectral analysis. Int Arch Photogram Remote Sens Spat Inf Sci 40(3):169

    Article  Google Scholar 

  12. Bernstein LS, Adler-Golden SM, Jin X, Gregor B, Sundberg RL (2012) Quick atmospheric correction (QUAC) code for VNIR-SWIR spectral imagery: algorithm details. In: 2012 4th workshop on hyperspectral image and signal processing (WHISPERS). IEEE, pp 1–4

  13. Carr SB, Bernstein LS, Adler-Golden SM (2015) The quick atmospheric correction (QUAC) algorithm for hyperspectral image processing: extending QUAC to a coastal scene. In: 2015 international conference on digital image computing: techniques and applications (DICTA). IEEE, pp 1–8

  14. Carr SB Quick atmospheric correction (QUAC) of worldview-3 multispectral imagery—a comparison to hyperspectral imagery results

  15. San BT, Suzen ML (2010) Evaluation of different atmospheric correction algorithms for EO-1 Hyperion imagery. Int Arch Photogram Remote Sens Spat Inf Sci 38(Part 8):392–397

    Google Scholar 

  16. Denisova A, Myasnikov V (2017) Atmospheric correction of hyperspectral images using qualitative information about registered scene. In: Ninth international conference on machine vision. International Society for Optics and Photonics, pp 1034125–1034125

  17. Thompson DR, Gao BC, Green RO, Roberts DA, Dennison PE, Lundeen SR (2015) Atmospheric correction for global mapping spectroscopy: ATREM advances for the HyspIRI preparatory campaign. Remote Sens Environ 167:64–77

    Article  ADS  Google Scholar 

  18. Seidel FC, Kokhanovsky AA, Schaepman ME (2010) Fast and simple model for atmospheric radiative transfer. Atmos Meas Tech 3:1129–1141

    Article  Google Scholar 

  19. Gao BC, Heidebrecht KB, Goetz AF (1993) Derivation of scaled surface reflectances from AVIRIS data. Remote Sens Environ 44(2–3):165–178

    Article  ADS  Google Scholar 

  20. Gao BC, Montes MJ, Davis CO, Goetz AF (2009) Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sens Environ 113:S17–S24

    Article  Google Scholar 

  21. Pflug B, Main-Knorn M (2014) Validation of atmospheric correction algorithm ATCOR. In: SPIE proceedings lidar, radar and passive atmospheric measurements II, vol 9242, no 92420W, pp 1–8

  22. Richter R, Center RSD (2004) ATCOR: atmospheric and topographic correction. DLR-German Aerospace Center. Remote Sensing Data Center

  23. Daniel Schlaepfer I (2017) Atmospheric & topographic correction: the ATCOR models. [online] Rese.ch. http://www.rese.ch/products/atcor/. Accessed 20 June 2017

  24. Schläpfer D, Richter R (2015) Recent developments in ATCOR for atmospheric compensation and radiometric processing of imaging spectroscopy data. EARSeL eProceedings 10(2015):1

    Google Scholar 

  25. Manakos I, Manevski K, Kalaitzidis C, Edler D (2011) Comparison between atmospheric correction modules on the basis of Worldview-2 imagery and in situ spectroradiometric measurements. In: Proceedings on 7th EARSeL SIG imaging spectroscopy workshop, pp 1–12

  26. Lantzanakis G, Mitraka Z, Chrysoulakis N (2017) Comparison of physically and image based atmospheric correction methods for Sentinel-2 satellite imagery. In: Karacostas T, Bais A, Nastos P (eds) Perspectives on atmospheric sciences. Springer, Cham, 255–261

  27. Sterckx S, Vreys K, Biesemans J, Iordache MD, Bertels L, Meuleman K (2016) Atmospheric correction of APEX hyperspectral data. Misc Geogr 20(1):16–20

    Google Scholar 

  28. Adler-Golden SM, Matthew MW, Bernstein LS, Levine RY, Berk A, Richtsmeier SC, Hoke ML (1999) Atmospheric correction for shortwave spectral imagery based on MODTRAN4. In: SPIE’s international symposium on optical science, engineering, and instrumentation. International Society for Optics and Photonics, pp 61–69

  29. Goetz AF, Ferri M, Kindel B, Qu Z (2002) Atmospheric correction of Hyperion data and techniques for dynamic scene correction. In: 2002 IEEE international geoscience and remote sensing symposium, 2002. IGARSS’02, vol 3. IEEE, pp 1408–1410

  30. Qu Z, Kindel BC, Goetz AF (2003) The high accuracy atmospheric correction for hyperspectral data (HATCH) model. IEEE Trans Geosci Remote Sens 41(6):1223–1231

    Article  ADS  Google Scholar 

  31. Dong Y, Du B, Zhang L, Zhang L (2017) Dimensionality reduction and classification of hyperspectral images using ensemble discriminative local metric learning. IEEE Trans Geosci Remote Sens 55(5):2509–2524

    Article  ADS  Google Scholar 

  32. Wang J, Chang CI (2006) Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans Geosci Remote Sens 44(6):1586–1600

    Article  ADS  Google Scholar 

  33. Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26(3):303

    Article  Google Scholar 

  34. Koonsanit K, Jaruskulchai C, Eiumnoh A (2012) Band selection for dimension reduction in hyper spectral image using integrated information gain and principal components analysis technique. Int J Mach Learn Comput 2(3):248

    Article  Google Scholar 

  35. Lodha SP, Kamlapur SM (2014) Dimensionality reduction techniques for hyperspectral images. Int J Appl Innov Eng Manage (IJAIEM) 3(10):92–99

    Google Scholar 

  36. Rodarmel C, Shan J (2002) Principal component analysis for hyperspectral image classification. Surv Land Inf Sci 62(2):115

    Google Scholar 

  37. Wu Z, Li Y, Plaza A, Li J, Xiao F, Wei Z (2016) Parallel and distributed dimensionality reduction of hyperspectral data on cloud computing architectures. IEEE J Sel Top Appl Earth Obs Remote Sens 9(6):2270–2278

    Article  Google Scholar 

  38. Phillips RD, Watson LT, Blinn CE, Wynne R. H (2008) An adaptive noise reduction technique for improving the utility of hyperspectral data. In: Proceedings of the 17th William T. Pecora memorial remote sensing symposium, pp 16–20

  39. Rajagopal R, Ranganathan V (2017) Evaluation of effect of unsupervised dimensionality reduction techniques on automated arrhythmia classification. Biomed Signal Process Control 34:1–8

    Article  Google Scholar 

  40. Hyvarinen A (2013) Independent component analysis: recent advances. Philos Trans R Soc A 371(1984):20110534

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Hyvärinen A, Oja E (2000) Independent component analysis: algorithms and applications. Neural Netw 13(4):411–430

    Article  Google Scholar 

  42. Martínez PJ, Pérez RM, Plaza A, Aguilar PL, Cantero MC, Plaza J (2006) Endmember extraction algorithms from hyperspectral images. Ann Geophys 49(1):93–101

    Google Scholar 

  43. Kowkabi F, Ghassemian H, Keshavarz A (2016) A fast spatial–spectral preprocessing module for hyperspectral endmember extraction. IEEE Geosci Remote Sens Lett 13(6):782–786

    Article  ADS  Google Scholar 

  44. Boardman JW, Kruse FA, Green RO (1995) Mapping target signatures via partial unmixing of AVIRIS data

  45. Plaza A, Sánchez-Testal JJ, Plaza J, Valencia D (2005) An experimental evaluation of endmember generation algorithms. In: Optics east 2005. International Society for Optics and Photonics, pp 599501–599501

  46. Chang CI, Plaza A (2006) A fast iterative algorithm for implementation of pixel purity index. IEEE Geosci Remote Sens Lett 3(1):63–67

    Article  ADS  Google Scholar 

  47. Winter ME (1999) N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. In: SPIE’s international symposium on optical science, engineering, and instrumentation. International Society for Optics and Photonics, pp 266–275

  48. Gonzalez C, Mozos D, Resano J, Plaza A (2011) FPGA implementation of endmember extraction algorithms from hyperspectral imagery: pixel purity index versus N-FINDR. In: SPIE remote sensing. International Society for Optics and Photonics, pp 81830F–81830F

  49. Nascimento JM, Dias JM (2005) Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans Geosci Remote Sens 43(4):898–910

    Article  ADS  Google Scholar 

  50. Plaza A, Martínez P, Pérez R, Plaza J (2004) A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data. IEEE Trans Geosci Remote Sens 42(3):650–663

    Article  ADS  Google Scholar 

  51. Plaza J, Hendrix EM, García I, Martín G, Plaza A (2012) On endmember identification in hyperspectral images without pure pixels: a comparison of algorithms. J Math Imaging Vis 42(2):163–175

    Article  MathSciNet  MATH  Google Scholar 

  52. Ifarraguerri A, Chang CI (1999) Multispectral and hyperspectral image analysis with convex cones. IEEE Trans Geosci Remote Sens 37(2):756–770

    Article  ADS  Google Scholar 

  53. Boardman JW (1993) Automating spectral unmixing of AVIRIS data using convex geometry concepts

  54. Chang CI, Wu CC, Liu W, Ouyang YC (2006) A new growing method for simplex-based endmember extraction algorithm. IEEE Trans Geosci Remote Sens 44(10):2804–2819

    Article  ADS  Google Scholar 

  55. Chang CI, Chen SY, Li HC, Chen HM, Wen CH (2016) Comparative study and analysis among ATGP, VCA, and SGA for finding endmembers in hyperspectral imagery. IEEE J Sel Top Appl Earth Obs Remote Sens 9(9):4280–4306

    Article  Google Scholar 

  56. Ji L, Geng X, Sun K, Zhao Y, Gong P (2015) Modified N-FINDR endmember extraction algorithm for remote-sensing imagery. Int J Remote Sens 36(8):2148–2162

    Article  Google Scholar 

  57. Plaza A, Martínez P, Pérez R, Plaza J (2002) Spatial/spectral endmember extraction by multidimensional morphological operations. IEEE Trans Geosci Remote Sens 40(9):2025–2041

    Article  ADS  Google Scholar 

  58. Goetz AFH (2001) Progress in hyperspectral imaging of vegetation. In Optics in Agriculture: 1990-2000: A Critical Review. Int Soc Opt Photonics. http://dx.doi.org/10.1117/12.420098

    Google Scholar 

  59. Neville R (1999) Automatic endmember extraction from hyperspectral data for mineral exploration. In: International airborne remote sensing conference and exhibition, 4th/21st Canadian symposium on remote sensing, Ottawa, Canada

  60. Heinz DC (2001) Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans Geosci Remote Sens 39(3):529–545

    Article  ADS  Google Scholar 

  61. Rogge DM, Rivard B, Zhang J, Sanchez A, Harris J, Feng J (2007) Integration of spatial–spectral information for the improved extraction of endmembers. Remote Sens Environ 110(3):287–303

    Article  ADS  Google Scholar 

  62. Adams JB, Gillespie AR (2006) Remote sensing of landscapes with spectral images: a physical modeling approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  63. Clark RN, Roush TL (1984) Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J Geophys Res Solid Earth 89(B7):6329–6340

    Article  Google Scholar 

  64. Tsai F, Philpot W (1998) Derivative analysis of hyperspectral data. Remote Sens Environ 66(1):41–51

    Article  ADS  Google Scholar 

  65. Roberts DA, Roth KL, Perroy RL (2016) Hyperspectral Vegetation Indices. In : Thenkabail PS, Lyon JG, Huete A (eds) Hyperspectral remote sensing of vegetation. Crc press, London, pp 309–327

  66. Milton EJ (1987) Review article principles of field spectroscopy. Remote Sens 8(12):1807–1827

    Article  Google Scholar 

  67. Magendran T, Sanjeevi S, Bhattacharya AK, Surada S (2011) Hyperspectral radiometry to estimate the grades of iron ores of Noamundi, India—a preliminary study. J Indian Soc Remote Sens 39(4):473–483

    Article  Google Scholar 

  68. Team U (2017) USGS Spectral Library|USGS Spectroscopy Laboratory. [online] Speclab.cr.usgs.gov. https://speclab.cr.usgs.gov/spectral-lib.html. Accessed 20 June 2017

  69. Speclib.jpl.nasa.gov (2017) Search—spectral library. [online] https://speclib.jpl.nasa.gov/search-1. Accessed 20 June 2017

  70. Ghamisi P, Plaza J, Chen Y, Li J, Plaza AJ (2017) Advanced spectral classifiers for hyperspectral images: a review. IEEE Geosci Remote Sens Mag 5(1):8–32

    Article  Google Scholar 

  71. Chutia D, Bhattacharyya DK, Sarma KK, Kalita R, Sudhakar S (2016) Hyperspectral remote sensing classifications: a perspective survey. Trans GIS 20(4):463–490

    Article  Google Scholar 

  72. Camps-Valls G, Marsheva TVB, Zhou D (2007) Semi-supervised graph-based hyperspectral image classification. IEEE Trans Geosci Remote Sens 45(10):3044–3054

    Article  ADS  Google Scholar 

  73. Amini S, Homayouni S, Safari A (2014) Semi-supervised classification of hyperspectral image using random forest algorithm. In: 2014 IEEE international geoscience and remote sensing symposium (IGARSS). IEEE, pp 2866–2869

  74. Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823–870

    Article  Google Scholar 

  75. Nath SS, Mishra G, Kar J, Chakraborty S, Dey N (2014) A survey of image classification methods and techniques. In 2014 international conference on control, instrumentation, communication and computational technologies (ICCICCT). IEEE, pp 554–557

  76. Magnussen S, Boudewyn P, Wulder M (2004) Contextual classification of Landsat TM images to forest inventory cover types. Int J Remote Sens 25(12):2421–2440

    Article  Google Scholar 

  77. Amasyali MF, Ersoy OK (2011) Comparison of single and ensemble classifiers in terms of accuracy and execution time. In: 2011 international symposium on innovations in intelligent systems and applications (INISTA). IEEE, pp 470–474

  78. Ghamisi P, Dalla Mura M, Benediktsson JA (2015) A survey on spectral–spatial classification techniques based on attribute profiles. IEEE Trans Geosci Remote Sens 53(5):2335–2353

    Article  ADS  Google Scholar 

  79. Maulik U, Chakraborty D (2017) Remote Sensing Image Classification: a survey of support-vector-machine-based advanced techniques. IEEE Geosci Remote Sens Mag 5(1):33–52

    Article  Google Scholar 

  80. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

    Article  ADS  Google Scholar 

  81. Waske B, Benediktsson JA, Árnason K, Sveinsson JR (2009) Mapping of hyperspectral AVIRIS data using machine-learning algorithms. Can J Remote Sens 35(sup1):S106–S116

    Article  ADS  Google Scholar 

  82. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  83. Joelsson SR, Benediktsson JA, Sveinsson JR (2005) Random forest classifiers for hyperspectral data. In: Proceedings on 2005 IEEE international geoscience and remote sensing symposium, 2005. IGARSS’05, vol 1. IEEE, pp 4-pp

  84. Luc B, Deronde B, Kempeneers P, Debruyn W, Provoost S, Sensing R, Observation E (2005) Optimized spectral angle Mapper classification of spatially heterogeneous dynamic dune vegetation, a case study along the Belgian coastline. In: 9th international symposium on physical measurements and signatures in remote sensing (ISPMSRS). Beijing, China, p 2005

  85. El Rahman SA, Aliady WA, Alrashed NI (2015) Supervised classification approaches to analyze hyperspectral dataset. Int J Image Graph Signal Process 7(5):42

    Article  Google Scholar 

  86. Van der Meer FD, De Jong S (2003) Spectral mapping methods: many problems, some solutions. In: Proceedings of the 3rd EARSeL workshop on imaging spectroscopy, Herrsching, Germany, pp 13–16

  87. Mazer AS, Martin M, Lee M, Solomon JE (1988) Image processing software for imaging spectrometry data analysis. Remote Sens Environ 24(1):201–210

    Article  ADS  Google Scholar 

  88. Schowengerdt RA (2006) Remote sensing: models and methods for image processing. Academic Press, Cambridge

    Google Scholar 

  89. Zhang L, Zhang L, Du B (2016) Deep learning for remote sensing data: a technical tutorial on the state of the art. IEEE Geosci Remote Sens Mag 4(2):22–40

    Article  Google Scholar 

  90. Chen Y, Lin Z, Zhao X, Wang G, Gu Y (2014) Deep learning-based classification of hyperspectral data. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2094–2107

    Article  Google Scholar 

  91. Zhou W, Shao Z, Diao C, Cheng Q (2015) High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder. Remote Sens Lett 6(10):775–783

    Article  Google Scholar 

  92. Chen Y, Zhao X, Jia X (2015) Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J Sel Top Appl Earth Obs Remote Sens 8(6):2381–2392

    Article  Google Scholar 

  93. Hu W, Huang Y, Wei L, Zhang F, Li H (2015) Deep convolutional neural networks for hyperspectral image classification. J Sens. https://doi.org/10.1155/2015/258619

    Google Scholar 

  94. Gao J (2008) Digital analysis of remotely sensed imagery. McGraw-Hill Professional, New York

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge to Department of Science and Technology, Government of India, for providing financial assistance under major research project R. No. BDID/01/23/2014-HSRS/35 (ALG-IV). Authors also extend heartfelt gratitude to DST-FIST program and UGC for providing lab facilities under UGC SAP (II) DRS Phase-I F.No.-3-42/2009, Phase-II 4-15/2015/DRS-II to Department of Computer Science & IT, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (MS) India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karbhari V. Kale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kale, K.V., Solankar, M.M., Nalawade, D.B. et al. A Research Review on Hyperspectral Data Processing and Analysis Algorithms. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 87, 541–555 (2017). https://doi.org/10.1007/s40010-017-0433-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-017-0433-y

Keywords

Navigation