Skip to main content

Advertisement

Log in

Pharmacokinetic aspects of the clinically used proteasome inhibitor drugs and efforts toward nanoparticulate delivery systems

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Background

Proteasome inhibitor drugs have provided a major breakthrough in the treatment of multiple myeloma and other hematological malignancies. Currently, there are three clinically used proteasome inhibitor drugs, namely bortezomib, carfilzomib, and ixazomib. Fueled by the remarkable successes of these drugs, additional drug candidates are actively pursued by targeting the proteasome and other components in the ubiquitin–proteasome pathways. Efforts are ongoing to overcome the drawbacks of the existing proteasome inhibitor drugs, optimize their pharmacokinetic aspects, and expand their clinical utility beyond the current indications, in particular for solid cancer therapy. Over the several decades, a variety of nanoparticulate delivery systems have been designed and applied to cancer therapy with a goal of improving the efficacy and safety.

Area covered

This review summarizes the pharmacokinetic aspects of the clinically used proteasome inhibitor drugs and the notable findings from the recent reports on the novel nanoparticulate delivery systems of bortezomib and carfilzomib.

Expert opinion

With the help of novel nanoparticulate delivery systems, the therapeutic utility of the proteasome inhibitor drugs is likely to expand to various types of cancer and other pathological conditions including neurodegenerative and inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    CAS  PubMed  Google Scholar 

  • Ailawadhi S, Sexton R, Lentzsch S, Abidi MH, Voorhees PM, Cohen AD, Rohren EM, Heitner S, Kelly K, Mackler NJ, Baer DM, Hoering A, Durie B, Orlowski RZ (2020) Low-dose versus high-dose carfilzomib with dexamethasone (S1304) in patients with relapsed-refractory multiple myeloma. Clin Cancer Res 26:3969–3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ao L, Reichel D, Hu D, Jeong H, Kim KB, Bae Y, Lee W (2015) Polymer micelle formulations of proteasome inhibitor carfilzomib for improved metabolic stability and anticancer efficacy in human multiple myeloma and lung cancer cell lines. J Pharmacol Exp Ther 355:168–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arastu-Kapur S, Anderl JL, Kraus M, Parlati F, Shenk KD, Lee SJ, Muchamuel T, Bennett MK, Driessen C, Ball AJ, Kirk CJ (2011) Nonproteasomal targets of the proteasome inhibitors bortezomib and carfilzomib: a link to clinical adverse events. Clin Cancer Res 17:2734–2743

    Article  CAS  PubMed  Google Scholar 

  • Ashley JD, Stefanick JF, Schroeder VA, Suckow MA, Alves NJ, Suzuki R, Kikuchi S, Hideshima T, Anderson KC, Kiziltepe T, Bilgicer B (2014a) Liposomal carfilzomib nanoparticles effectively target multiple myeloma cells and demonstrate enhanced efficacy in vivo. J Control Release 196:113–121

    Article  CAS  PubMed  Google Scholar 

  • Ashley JD, Stefanick JF, Schroeder VA, Suckow MA, Kiziltepe T, Bilgicer B (2014b) Liposomal bortezomib nanoparticles via boronic ester prodrug formulation for improved therapeutic efficacy in vivo. J Med Chem 57:5282–5292

    Article  CAS  PubMed  Google Scholar 

  • Ashley JD, Quinlan CJ, Schroeder VA, Suckow MA, Pizzuti VJ, Kiziltepe T, Bilgicer B (2016) Dual carfilzomib and doxorubicin-loaded liposomal nanoparticles for synergistic efficacy in multiple myeloma. Mol Cancer Ther 15:1452–1459

    Article  CAS  PubMed  Google Scholar 

  • Badros AZ, Vij R, Martin T, Zonder JA, Kunkel L, Wang Z, Lee S, Wong AF, Niesvizky R (2013) Carfilzomib in multiple myeloma patients with renal impairment: pharmacokinetics and safety. Leukemia 27:1707–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown J, Plummer R, Bauer TM, Anthony S, Sarantopoulos J, De Vos F, White M, Schupp M, Ou Y, Vaishampayan U (2017) Pharmacokinetics of carfilzomib in patients with advanced malignancies and varying degrees of hepatic impairment: an open-label, single-arm, phase 1 study. Exp Hematol Oncol 6:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmony K, Lee W, Kim KB (2016) High-resolution snapshots of proteasome inhibitors in action revise inhibition paradigms and inspire next-generation inhibitor design. ChemBioChem 17:2115–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan D, Tian Z, Zhou B, Kuhn D, Orlowski R, Raje N, Richardson P, Anderson KC (2011) In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin Cancer Res 17:5311–5321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chillemi A, Zaccarello G, Quarona V, Lazzaretti M, Martella E, Giuliani N, Ferracini R, Pistoia V, Horenstein AL, Malavasi F (2014) CD38 and bone marrow microenvironment. Front Biosci (Landmark Ed) 19:152–162

    Article  CAS  Google Scholar 

  • De La Puente P, Luderer MJ, Federico C, Jin A, Gilson RC, Egbulefu C, Alhallak K, Shah S, Muz B, Sun J, King J, Kohnen D, Salama NN, Achilefu S, Vij R, Azab AK (2018) Enhancing proteasome-inhibitory activity and specificity of bortezomib by CD38 targeted nanoparticles in multiple myeloma. J Control Release 270:158–176

    Article  PubMed  Google Scholar 

  • Demo SD, Kirk CJ, Aujay MA, Buchholz TJ, Dajee M, Ho MN, Jiang J, Laidig GJ, Lewis ER, Parlati F, Shenk KD, Smyth MS, Sun CM, Vallone MK, Woo TM, Molineaux CJ, Bennett MK (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67:6383–6391

    Article  CAS  PubMed  Google Scholar 

  • Deng H, Konopka CJ, Cross TL, Swanson KS, Dobrucki LW, Smith AM (2020) Multimodal nanocarrier probes reveal superior biodistribution quantification by isotopic analysis over fluorescence. ACS Nano 14:509–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deshantri AK, Metselaar JM, Zagkou S, Storm G, Mandhane SN, Fens M, Schiffelers RM (2019) Development and characterization of liposomal formulation of bortezomib. Int J Pharm X 1:100011

    Google Scholar 

  • Di Costanzo A, Del Gaudio N, Conte L, Altucci L (2020) The ubiquitin proteasome system in hematological malignancies: new insight into its functional role and therapeutic options. Cancers (Basel) 12:1898

    Article  Google Scholar 

  • Diaz DB, Yudin AK (2017) The versatility of boron in biological target engagement. Nat Chem 9:731–742

    Article  CAS  PubMed  Google Scholar 

  • Dimopoulos MA, Niesvizky R, Weisel K, Siegel DS, Hajek R, Mateos MV, Cavo M, Huang M, Zahlten-Kumeli A, Moreau P (2020) Once- versus twice-weekly carfilzomib in relapsed and refractory multiple myeloma by select patient characteristics: Phase 3 ARROW Study subgroup analysis. Blood Cancer J 10:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Dorsey BD, Iqbal M, Chatterjee S, Menta E, Bernardini R, Bernareggi A, Cassara PG, D’arasmo G, Ferretti E, De Munari S, Oliva A, Pezzoni G, Allievi C, Strepponi I, Ruggeri B, Ator MA, Williams M, Mallamo JP (2008) Discovery of a potent, selective, and orally active proteasome inhibitor for the treatment of cancer. J Med Chem 51:1068–1072

    Article  CAS  PubMed  Google Scholar 

  • Efentakis P, Kremastiotis G, Varela A, Nikolaou PE, Papanagnou ED, Davos CH, Tsoumani M, Agrogiannis G, Konstantinidou A, Kastritis E, Kanaki Z, Iliodromitis EK, Klinakis A, Dimopoulos MA, Trougakos IP, Andreadou I, Terpos E (2019) Molecular mechanisms of carfilzomib-induced cardiotoxicity in mice and the emerging cardioprotective role of metformin. Blood 133:710–723

    Article  CAS  PubMed  Google Scholar 

  • Groll M, Berkers CR, Ploegh HL, Ovaa H (2006) Crystal structure of the boronic acid-based proteasome inhibitor bortezomib in complex with the yeast 20S proteasome. Structure 14:451–456

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Wang X, Cheng R, Cheng L, Zhong Z (2018) Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma. Acta Biomater 80:288–295

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Zhao Y, Hui AM, Esseltine DL, Venkatakrishnan K (2015) Switching from body surface area-based to fixed dosing for the investigational proteasome inhibitor ixazomib: a population pharmacokinetic analysis. Br J Clin Pharmacol 79:789–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Diderichsen PM, Hanley MJ, Berg D, Van De Velde H, Harvey RD, Venkatakrishnan K (2017) Population pharmacokinetic analysis of ixazomib, an oral proteasome inhibitor, including data from the phase III tourmaline-MM1 study to inform labelling. Clin Pharmacokinet 56:1355–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta N, Hanley MJ, Venkatakrishnan K, Bessudo A, Rasco DW, Sharma S, O’neil BH, Wang B, Liu G, Ke A, Patel C, Rowland Yeo K, Xia C, Zhang X, Esseltine DL, Nemunaitis J (2018) Effects of strong CYP3A inhibition and induction on the pharmacokinetics of ixazomib, an oral proteasome inhibitor: results of drug-drug interaction studies in patients with advanced solid tumors or lymphoma and a physiologically based pharmacokinetic analysis. J Clin Pharmacol 58:180–192

    Article  CAS  PubMed  Google Scholar 

  • Gupta N, Hanley MJ, Diderichsen PM, Yang H, Ke A, Teng Z, Labotka R, Berg D, Patel C, Liu G, Van De Velde H, Venkatakrishnan K (2019) Model-informed drug development for ixazomib, an oral proteasome inhibitor. Clin Pharmacol Ther 105:376–387

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hari P, Matous JV, Voorhees PM, Shain KH, Obreja M, Frye J, Fujii H, Jakubowiak AJ, Rossi D, Sonneveld P (2019) Oprozomib in patients with newly diagnosed multiple myeloma. Blood Cancer J 9:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellmann A, Rule S, Walewski J, Shpilberg O, Feng H, Van De Velde H, Patel H, Skee DM, Girgis S, Louw VJ (2011) Effect of cytochrome P450 3A4 inducers on the pharmacokinetic, pharmacodynamic and safety profiles of bortezomib in patients with multiple myeloma or non-Hodgkin’s lymphoma. Clin Pharmacokinet 50:781–791

    Article  CAS  PubMed  Google Scholar 

  • Herndon TM, Deisseroth A, Kaminskas E, Kane RC, Koti KM, Rothmann MD, Habtemariam B, Bullock J, Bray JD, Hawes J, Palmby TR, Jee J, Adams W, Mahayni H, Brown J, Dorantes A, Sridhara R, Farrell AT, Pazdur R (2013) U.S. Food and drug administration approval: carfilzomib for the treatment of multiple myeloma. Clin Cancer Res 19:4559–4563

    Article  CAS  PubMed  Google Scholar 

  • Hong EP, Kim JY, Kim SH, Hwang KM, Park CW, Lee HJ, Kim DW, Weon KY, Jeong SY, Park ES (2016) Formulation and evaluation of a self-microemulsifying drug delivery system containing bortezomib. Chem Pharm Bull (Tokyo) 64:1108–1117

    Article  CAS  Google Scholar 

  • Huang Z, Wu Y, Zhou X, Xu J, Zhu W, Shu Y, Liu P (2014) Efficacy of therapy with bortezomib in solid tumors: a review based on 32 clinical trials. Future Oncol 10:1795–1807

    Article  CAS  PubMed  Google Scholar 

  • Jansook P, Kurkov SV, Loftsson T (2010) Cyclodextrins as solubilizers: formation of complex aggregates. J Pharm Sci 99:719–729

    Article  CAS  PubMed  Google Scholar 

  • Jun Y, Xu J, Kim H, Park JE, Jeong YS, Min JS, Yoon N, Choi JY, Yoo J, Bae SK, Chung SJ, Yeo Y, Lee W (2020) Carfilzomib delivery by quinic acid-conjugated nanoparticles: discrepancy between tumoral drug accumulation and anticancer efficacy in a murine 4T1 orthotopic breast cancer model. J Pharm Sci 109:1615–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kane RC, Bross PF, Farrell AT, Pazdur R (2003) Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 8:508–513

    Article  PubMed  Google Scholar 

  • Kang T, Zhu Q, Wei D, Feng J, Yao J, Jiang T, Song Q, Wei X, Chen H, Gao X, Chen J (2017) Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 11:1397–1411

    Article  CAS  PubMed  Google Scholar 

  • Kim KB, Crews CM (2013) From epoxomicin to carfilzomib: chemistry, biology, and medical outcomes. Nat Prod Rep 30:600–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korani M, Ghaffari S, Attar H, Mashreghi M, Jaafari MR (2019) Preparation and characterization of nanoliposomal bortezomib formulations and evaluation of their anti-cancer efficacy in mice bearing C26 colon carcinoma and B16F0 melanoma. Nanomedicine 20:102013

    Article  CAS  PubMed  Google Scholar 

  • Kumar SK, Bensinger WI, Zimmerman TM, Reeder CB, Berenson JR, Berg D, Hui AM, Gupta N, Di Bacco A, Yu J, Shou Y, Niesvizky R (2014) Phase 1 study of weekly dosing with the investigational oral proteasome inhibitor ixazomib in relapsed/refractory multiple myeloma. Blood 124:1047–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar SK, Callander NS, Hillengass J, Liedtke M, Baljevic M, Campagnaro E, Castillo JJ, Chandler JC, Cornell RF, Costello C, Efebera Y, Faiman M, Garfall A, Godby K, Holmberg L, Htut M, Huff CA, Kang Y, Landgren O, Malek E, Martin T, Omel J, Raje N, Sborov D, Singhal S, Stockerl-Goldstein K, Tan C, Weber D, Johnson-Chilla A, Keller J, Kumar R (2019) NCCN guidelines insights: multiple myeloma, version 1.2020. J Natl Compr Canc Netw 17:1154–1165

    Article  PubMed  Google Scholar 

  • Kupperman E, Lee EC, Cao Y, Bannerman B, Fitzgerald M, Berger A, Yu J, Yang Y, Hales P, Bruzzese F, Liu J, Blank J, Garcia K, Tsu C, Dick L, Fleming P, Yu L, Manfredi M, Rolfe M, Bolen J (2010) Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res 70:1970–1980

    Article  CAS  PubMed  Google Scholar 

  • Leal TB, Remick SC, Takimoto CH, Ramanathan RK, Davies A, Egorin MJ, Hamilton A, Lorusso PA, Shibata S, Lenz HJ, Mier J, Sarantopoulos J, Mani S, Wright JJ, Ivy SP, Neuwirth R, Von Moltke L, Venkatakrishnan K, Mulkerin D (2011) Dose-escalating and pharmacological study of bortezomib in adult cancer patients with impaired renal function: a national cancer institute organ dysfunction working group study. Cancer Chemother Pharmacol 68:1439–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee ALZ, Voo ZX, Chin W, Ono RJ, Yang C, Gao S, Hedrick JL, Yang YY (2018) Injectable coacervate hydrogel for delivery of anticancer drug-loaded nanoparticles in vivo. ACS Appl Mater Interfaces 10:13274–13282

    Article  CAS  PubMed  Google Scholar 

  • Leveque D, Carvalho MC, Maloisel F (2007) Review. clinical pharmacokinetics of bortezomib. In Vivo 21:273–278

    CAS  PubMed  Google Scholar 

  • Liu S, Ono RJ, Yang C, Gao S, Ming Tan JY, Hedrick JL, Yang YY (2018) Dual pH-responsive shell-cleavable polycarbonate micellar nanoparticles for in vivo anticancer drug delivery. ACS Appl Mater Interfaces 10:19355–19364

    Article  CAS  PubMed  Google Scholar 

  • Lopalco A, Marinaro WA, Day VW, Stella VJ (2017) Isolation, solubility, and characterization of D-mannitol esters of 4-methoxybenzeneboronic acid. J Pharm Sci 106:601–610

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Li Y, Wu W (2016) Injected nanocrystals for targeted drug delivery. Acta Pharm Sin B 6:106–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Luke DR, Tomaszewski K, Damle B, Schlamm HT (2010) Review of the basic and clinical pharmacology of sulfobutylether-beta-cyclodextrin (SBECD). J Pharm Sci 99:3291–3301

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudian M, Valizadeh H, Lobenberg R, Zakeri-Milani P (2020) Enhancement of the intestinal absorption of bortezomib by self-nanoemulsifying drug delivery system. Pharm Dev Technol 25:351–358

    Article  CAS  PubMed  Google Scholar 

  • Meng F, Wang J, Ping Q, Yeo Y (2018) Quantitative assessment of nanoparticle biodistribution by fluorescence imaging, revisited. ACS Nano 12:6458–6468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messner M, Kurkov SV, Jansook P, Loftsson T (2010) Self-assembled cyclodextrin aggregates and nanoparticles. Int J Pharm 387:199–208

    Article  CAS  PubMed  Google Scholar 

  • Moore S, Atwal S, Sachchithanantham S, Streetly M, Khan I, Percy L, Narat S, D’sa S, Rabin N, Johnston R, Schey S, Yong K (2013) Weekly intravenous bortezomib is effective and well tolerated in relapsed/refractory myeloma. Eur J Haematol 90:420–425

    Article  CAS  PubMed  Google Scholar 

  • Moreau P, Pylypenko H, Grosicki S, Karamanesht I, Leleu X, Grishunina M, Rekhtman G, Masliak Z, Robak T, Shubina A, Arnulf B, Kropff M, Cavet J, Esseltine DL, Feng H, Girgis S, Van De Velde H, Deraedt W, Harousseau JL (2011) Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol 12:431–440

    Article  PubMed  Google Scholar 

  • Moreau P, Masszi T, Grzasko N, Bahlis NJ, Hansson M, Pour L, Sandhu I, Ganly P, Baker BW, Jackson SR, Stoppa AM, Simpson DR, Gimsing P, Palumbo A, Garderet L, Cavo M, Kumar S, Touzeau C, Buadi FK, Laubach JP, Berg DT, Lin J, Di Bacco A, Hui AM, Van De Velde H, Richardson PG, Group T-MS (2016) Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med 374:1621–1634

    Article  CAS  PubMed  Google Scholar 

  • Muller RH, Gohla S, Keck CM (2011) State of the art of nanocrystals–special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 78:1–9

    Article  PubMed  Google Scholar 

  • O’connor OA, Stewart AK, Vallone M, Molineaux CJ, Kunkel LA, Gerecitano JF, Orlowski RZ (2009) A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitor carfilzomib (pr-171) in patients with hematologic malignancies. Clin Cancer Res 15:7085–7091

    Article  PubMed  PubMed Central  Google Scholar 

  • Oakes SA (2017) Endoplasmic reticulum proteostasis: a key checkpoint in cancer. Am J Physiol Cell Physiol 312:C93–C102

    Article  PubMed  Google Scholar 

  • Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S, Adams J, Esseltine DL, Elliott PJ, Pien CS, Guerciolini R, Anderson JK, Depcik-Smith ND, Bhagat R, Lehman MJ, Novick SC, O’connor OA, Soignet SL (2002) Phase I trial of the proteasome inhibitor ps-341 in patients with refractory hematologic malignancies. J Clin Oncol 20:4420–4427

    Article  CAS  PubMed  Google Scholar 

  • Ou Y, Doshi S, Nguyen A, Jonsson F, Aggarwal S, Rajangam K, Dimopoulos MA, Stewart AK, Badros A, Papadopoulos KP, Siegel D, Jagannath S, Vij R, Niesvizky R, Graham R, Visich J (2017) Population pharmacokinetics and exposure-response relationship of carfilzomib in patients with multiple myeloma. J Clin Pharmacol 57:663–677

    Article  CAS  PubMed  Google Scholar 

  • Park JE, Chun SE, Reichel D, Min JS, Lee SC, Han S, Ryoo G, Oh Y, Park SH, Ryu HM, Kim KB, Lee HY, Bae SK, Bae Y, Lee W (2017) Polymer micelle formulation for the proteasome inhibitor drug carfilzomib: anticancer efficacy and pharmacokinetic studies in mice. PLoS One 12:e0173247

    Article  PubMed  PubMed Central  Google Scholar 

  • Park J, Park JE, Hedrick VE, Wood KV, Bonham C, Lee W, Yeo Y (2018) A comparative in vivo study of albumin-coated paclitaxel nanocrystals and abraxane. Small 14:e1703670

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JE, Park J, Jun Y, Oh Y, Ryoo G, Jeong YS, Gadalla HH, Min JS, Jo JH, Song MG, Kang KW, Bae SK, Yeo Y, Lee W (2019) Expanding therapeutic utility of carfilzomib for breast cancer therapy by novel albumin-coated nanocrystal formulation. J Control Release 302:148–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quach H, White D, Spencer A, Ho PJ, Bhutani D, White M, Inamdar S, Morris C, Ou Y, Gyger M (2017) Pharmacokinetics and safety of carfilzomib in patients with relapsed multiple myeloma and end-stage renal disease (esrd): an open-label, single-arm, phase I study. Cancer Chemother Pharmacol 79:1067–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajoria S, Rani S, Chaudhari D, Jain S, Gupta U (2019) Glycine-poly-L-lactic acid copolymeric nanoparticles for the efficient delivery of bortezomib. Pharm Res 36:160

    Article  PubMed  Google Scholar 

  • Rani S, Sahoo RK, Nakhate KT, Ajazuddin, Gupta U (2020) Biotinylated HPMA centered polymeric nanoparticles for bortezomib delivery. Int J Pharm 579:119173

    Article  CAS  PubMed  Google Scholar 

  • Reichel D, Lee MJ, Lee W, Kim KB, Bae Y (2016) Tethered polymer nanoassemblies for sustained carfilzomib release and prolonged suppression of proteasome activity. Ther Deliv 7:665–681

    Article  CAS  PubMed  Google Scholar 

  • Robak P, Robak T (2019) Bortezomib for the treatment of hematologic malignancies: 15 years later. Drugs R D 19:73–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roeten MSF, Cloos J, Jansen G (2018) Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother Pharmacol 81:227–243

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Serrano I (2006) Success in translational research: lessons from the development of bortezomib. Nat Rev Drug Discov 5:107–114

    Article  PubMed  Google Scholar 

  • Schrader J, Henneberg F, Mata RA, Tittmann K, Schneider TR, Stark H, Bourenkov G, Chari A (2016) The inhibition mechanism of human 20s proteasomes enables next-generation inhibitor design. Science 353:594–598

    Article  CAS  PubMed  Google Scholar 

  • Shah C, Bishnoi R, Jain A, Bejjanki H, Xiong S, Wang Y, Zou F, Moreb JS (2018) Cardiotoxicity associated with carfilzomib: systematic review and meta-analysis. Leuk Lymphoma 59:2557–2569

    Article  CAS  PubMed  Google Scholar 

  • Shen S, Du XJ, Liu J, Sun R, Zhu YH, Wang J (2015) Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy. J Control Release 208:14–24

    Article  CAS  PubMed  Google Scholar 

  • Soe ZC, Poudel BK, Nguyen HT, Thapa RK, Ou W, Gautam M, Poudel K, Jin SG, Jeong JH, Ku SK, Choi HG, Yong CS, Kim JO (2019) Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells. Asian J Pharm Sci 14:40–51

    Article  PubMed  Google Scholar 

  • Swami A, Reagan MR, Basto P, Mishima Y, Kamaly N, Glavey S, Zhang S, Moschetta M, Seevaratnam D, Zhang Y, Liu J, Memarzadeh M, Wu J, Manier S, Shi J, Bertrand N, Lu ZN, Nagano K, Baron R, Sacco A, Roccaro AM, Farokhzad OC, Ghobrial IM (2014) Engineered nanomedicine for myeloma and bone microenvironment targeting. Proc Natl Acad Sci USA 111:10287–10292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taha MS, Cresswell GM, Park J, Lee W, Ratliff TL, Yeo Y (2019) Sustained delivery of carfilzomib by tannic acid-based nanocapsules helps develop antitumor immunity. Nano Lett 19:8333–8341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Ichihara A (1989) Half-life of proteasomes (multiprotease complexes) in rat liver. Biochem Biophys Res Commun 159:1309–1315

    Article  CAS  PubMed  Google Scholar 

  • Teicher BA, Anderson KC (2015) CCR 20th anniversary commentary: in the beginning, there was PS-341. Clin Cancer Res 21:939–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teicher BA, Ara G, Herbst R, Palombella VJ, Adams J (1999) The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 5:2638–2645

    CAS  PubMed  Google Scholar 

  • Terpos E, Ramasamy K, Maouche N, Minarik J, Ntanasis-Stathopoulos I, Katodritou E, Jenner MW, Plonkova H, Gavriatopoulou M, Vallance GD, Pika T, Kotsopoulou M, Kothari J, Jelinek T, Kastritis E, Aitchison R, Dimopoulos MA, Zomas A, Hajek R (2020) Real-world effectiveness and safety of ixazomib-lenalidomide-dexamethasone in relapsed/refractory multiple myeloma. Ann Hematol 99:1049–1061

    Article  CAS  PubMed  Google Scholar 

  • Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal P, Marini S, Purrello P, Graziani G, Coletta M (2020) The proteasome as a druggable target with multiple therapeutic potentialities: cutting and non-cutting edges. Pharmacol Ther 213:107579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uttamsingh V, Lu C, Miwa G, Gan LS (2005) Relative contributions of the five major human cytochromes P450, 1A2, 2C9, 2C19, 2D6, and 3A4, to the hepatic metabolism of the proteasome inhibitor bortezomib. Drug Metab Dispos 33:1723–1728

    Article  CAS  PubMed  Google Scholar 

  • Van De Donk NW, Janmaat ML, Mutis T, Lammerts Van Bueren JJ, Ahmadi T, Sasser AK, Lokhorst HM, Parren PW (2016) Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol Rev 270:95–112

    Article  PubMed  PubMed Central  Google Scholar 

  • Varela-Moreira A, Van Straten D, Van Leur HF, Ruiter RWJ, Deshantri AK, Hennink WE, Fens M, Groen RWJ, Schiffelers RM (2020) Polymeric micelles loaded with carfilzomib increase tolerability in a humanized bone marrow-like scaffold mouse model. Int J Pharm X 2:100049

    Google Scholar 

  • Venkatakrishnan K, Rader M, Ramanathan RK, Ramalingam S, Chen E, Riordan W, Trepicchio W, Cooper M, Karol M, Von Moltke L, Neuwirth R, Egorin M, Chatta G (2009) Effect of the CYP3A inhibitor ketoconazole on the pharmacokinetics and pharmacodynamics of bortezomib in patients with advanced solid tumors: a prospective, multicenter, open-label, randomized, two-way crossover drug-drug interaction study. Clin Ther 31(Pt 2):2444–2458

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yang J, Kirk C, Fang Y, Alsina M, Badros A, Papadopoulos K, Wong A, Woo T, Bomba D, Li J, Infante JR (2013) Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib. Drug Metab Dispos 41:230–237

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Cai X, Yang J, Wang C, Tong L, Xiao J, Li L (2018) A targeted and pH-responsive bortezomib nanomedicine in the treatment of metastatic bone tumors. ACS Appl Mater Interfaces 10:41003–41011

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Wang Z, Fang Y, Jiang J, Zhao F, Wong H, Bennett MK, Molineaux CJ, Kirk CJ (2011) Pharmacokinetics, pharmacodynamics, metabolism, distribution, and excretion of carfilzomib in rats. Drug Metab Dispos 39:1873–1882

    Article  CAS  PubMed  Google Scholar 

  • Yang WJ, Liang L, Wang X, Cao Y, Xu W, Chang D, Gao Y, Wang L (2018) Versatile functionalization of surface-tailorable polymer nanohydrogels for drug delivery systems. Biomater Sci 7:247–261

    Article  PubMed  Google Scholar 

  • Zhang L, Mager DE (2015) Physiologically-based pharmacokinetic modeling of target-mediated drug disposition of bortezomib in mice. J Pharmacokinet Pharmacodyn 42:541–552

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Lu L, Ying M, Ruan H, Wang X, Wang H, Chai Z, Wang S, Zhan C, Pan J, Lu W (2018a) Enhanced glioblastoma targeting ability of carfilzomib enabled by a (d)A7R-modified lipid nanodisk. Mol Pharm 15:2437–2447

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Yuan T, Dong H, Xu J, Wang D, Tong H, Ji X, Sun B, Zhu M, Jiang X (2018b) Novel block glycopolymers prepared as delivery nanocarriers for controlled release of bortezomib. Colloid Polym Sci 296:1827–1839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Wang X, Cheng R, Zhong Z (2020) A6 peptide-tagged core-disulfide-cross-linked micelles for targeted delivery of proteasome inhibitor carfilzomib to multiple myeloma in vivo. Biomacromol 21:2049–2059

    Article  CAS  Google Scholar 

  • Zhu J, Huo Q, Xu M, Yang F, Li Y, Shi H, Niu Y, Liu Y (2018) Bortezomib-catechol conjugated prodrug micelles: combining bone targeting and aryl boronate-based pH-responsive drug release for cancer bone-metastasis therapy. Nanoscale 10:18387–18397

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported in part by Creative-Pioneering Researchers Program through Seoul National University (to W.L.), the National Institutes of Health NCI (R01 CA232419 to Y.Y.) and Trask Innovation Fund (to Y.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wooin Lee.

Ethics declarations

Conflict of interest

All authors (S. Kwon, K.B. Kim, Y. Yeo, and W. Lee) declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, S., Kim, K.B., Yeo, Y. et al. Pharmacokinetic aspects of the clinically used proteasome inhibitor drugs and efforts toward nanoparticulate delivery systems. J. Pharm. Investig. 51, 483–502 (2021). https://doi.org/10.1007/s40005-021-00532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-021-00532-0

Keywords

Navigation