Skip to main content
Log in

Image-guided nanomedicine for cancer

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

Since current treatment options applicable to cancers are still confined to chemotherapeutics followed by surgical debulking, cancer disease is a second leading cause of death because of chemotherapeutics of non-specific biodistribution. Image-guided drug delivery system (IGDDS) is a real-time noninvasive imaging assessment of therapeutic response that has the strong potential to control or suppress cancer because imaging property offer the quantification of nanomedicine at the intended disease site, thus the potential assurance of adequate treatment and elimination of undesirable delay leading to poor clinical outcomes. Also, combining pH-sensitive advantages of nanoparticle with theranostic property will have high chance to overcome cancer. There have been intensive researches to develop innovative IGDDS by using nanoparticles including organic or inorganic theranostic (therapy + diagnostic) systems including liposomes, polymeric micelles, dendrimers, carbon nanotubes, gold nanoparticles, iron oxide nanoparticles, quantum dots, and silica nanoparticles. In this review, we will introduce various examples of each system and will discuss their theranostic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reprinted by permission from (Yang et al. 2010). Copyright 2010 American Chemical Society.)

Fig. 3

(Reprinted by permission from (Xia et al. 2011). Copyright 2010 Elsevier Ltd.)

Fig. 4

(Reprinted by permission from (He et al. 2011). Copyright 2011 Nature Publishing Group.)

Similar content being viewed by others

References

  • Ahmed N, Fessi H, Elaissari A (2012) Theranostic applications of nanoparticles in cancer. Drug Discov Today 17:928–934

    Article  CAS  PubMed  Google Scholar 

  • Akerman ME, Chan WCW, Laakkonen P et al (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci 99: 12617–12621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alqawlaq S, Sivak JM, Huzil JT et al (2014) Preclinical development and ocular biodistribution of gemini-DNA nanoparticles after intravitreal and topical administration: towards non-invasive glaucoma gene therapy. Nanomed Nanotech Biol Med 10: 1637–1647

    Article  CAS  Google Scholar 

  • Benezra M, Penate-Medina O, Zanzonico PB et al (2011) Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J Clin Invest 121:2768–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry CC, Wells S, Charles S et al (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24:4551–4557

    Article  CAS  PubMed  Google Scholar 

  • Bosman AW, Janssen HM, Meijer EW (1999) About dendrimers: structure, physical properties, and applications. Chem Rev 99:1665–1688

    Article  CAS  PubMed  Google Scholar 

  • Braun GB, Pallaoro A, Wu G et al (2009) Laser-activated gene silencing via gold nanoshell–siRNA conjugates. ACS Nano 3:2007–2015

    Article  CAS  PubMed  Google Scholar 

  • Cai D, Mataraza JM, Qin Z-H et al (2005) Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing. Nat Meth 2: 449–454

    Article  CAS  Google Scholar 

  • Chakravarty R, Goel S, Hong H et al (2015) Hollow mesoporous silica nanoparticles for tumor vasculature targeting and PET image-guided drug delivery. Nanomedicine 10:1233–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Hong H, Zhang Y et al (2013) In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano 7:9027–9039

    Article  CAS  PubMed  Google Scholar 

  • Cho H, Kwon GS (2011) Polymeric micelles for neoadjuvant cancer therapy and tumor-primed optical imaging. ACS Nano 5:8721–8729

    Article  CAS  PubMed  Google Scholar 

  • Cuenca AG, Jiang H, Hochwald SN et al (2006) Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 107:459–466

    Article  CAS  PubMed  Google Scholar 

  • D’Emanuele A, Attwood D (2005) Dendrimer–drug interactions. Adv Drug Deliv Rev 57:2147–2162

    Article  PubMed  Google Scholar 

  • Derfus AM, Chan WCW, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18

    Article  CAS  Google Scholar 

  • Dreaden EC, Mackey MA, Huang X et al (2011) Beating cancer in multiple ways using nanogold. Chem Soc Rev 40:3391–3404

    Article  CAS  PubMed  Google Scholar 

  • du Plessis J, Weiner N, Müller DG (1994) The influence of in vivo treatment of skin with liposomes on the topical absorption of a hydrophilic and a hydrophobic drug in vitro. Int J Pharm 103:R1–R5

    Article  Google Scholar 

  • Dykes GM (2001) Dendrimers: a review of their appeal and applications. J Chem Tech Biotech 76:903–918

    Article  CAS  Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  CAS  PubMed  Google Scholar 

  • Gabizon A, Goren D, Horowitz AT et al (1997) Long-circulating liposomes for drug delivery in cancer therapy: a review of biodistribution studies in tumor-bearing animals. Adv Drug Deliv Rev 24:337–344

    Article  CAS  Google Scholar 

  • Gerweck LE, Seetharaman K (1996) pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56:1194–1198

    CAS  PubMed  Google Scholar 

  • Guo J, Hong H, Chen G et al (2013) Image-guided and tumor-targeted drug delivery with radiolabeled unimolecular micelles. Biomaterials 34:8323–8332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta AK, Curtis ASG (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15:493–496

    Article  CAS  PubMed  Google Scholar 

  • Guthi JS, Yang S-G, Huang G et al (2010) MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm 7:32–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Q, Shi J, Cui X et al (2011) Synthesis of oxygen-deficient luminescent mesoporous silica nanoparticles for synchronous drug delivery and imaging. Chem Comm 47:7947–7949

    Article  CAS  PubMed  Google Scholar 

  • Heo DN, Yang DH, Moon H-J et al (2012) Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials 33:856–866

    Article  CAS  PubMed  Google Scholar 

  • Hollis CP, Weiss HL, Leggas M et al (2013) Biodistribution and bioimaging studies of hybrid paclitaxel nanocrystals: lessons learned of the EPR effect and image-guided drug delivery. J Control Rel 172:12–21

    Article  CAS  Google Scholar 

  • Howarth M, Liu W, Puthenveetil S et al (2008) Monovalent, reduced-size quantum dots for imaging receptors on living cells. Nat Methods 5: 397–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Li Y, Orza A et al (2016) Magnetic nanoparticle facilitated drug delivery for cancer therapy with targeted and image-guided approaches. Adv Func Mater 26: 3818–3836

    Article  CAS  Google Scholar 

  • Jackson EF, Esparza-Coss E, Wen X et al (2007) Magnetic resonance imaging of therapy-induced necrosis using gadolinium-chelated polyglutamic acids. Int J Radiat Oncol Biol Phys 68:830–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain TK, Morales MA, Sahoo SK et al (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2:194–205

    Article  CAS  PubMed  Google Scholar 

  • Jain PK, Qian W, El-Sayed MA (2006) Ultrafast Cooling of photoexcited electrons in gold nanoparticle–thiolated DNA conjugates involves the dissociation of the gold–thiol bond. J Am Chem Soc 128:2426–2433

    Article  CAS  PubMed  Google Scholar 

  • Jang J-t, Nah H, Lee J-H et al (2009) Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew Chem 121: 1260–1264

    Article  Google Scholar 

  • Ji S-r, Liu C, Zhang B et al (2010) Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophys Acta Rev Cancer 1806: 29–35

  • Jones M-C, Leroux J-C (1999) Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111

    Article  CAS  PubMed  Google Scholar 

  • Josephson L, Kircher MF, Mahmood U et al (2002) Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconj Chem 13: 554–560

    Article  CAS  Google Scholar 

  • Jun Y-w, Lee J-H, Cheon J (2008a) Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem Int Ed 47:5122–5135

  • Jun Y-w, Seo J-w, Cheon J (2008b) Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res 41:179–189

  • Kam NWS, Liu Z, Dai H (2005) Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J Am Chem Soc 127:12492–12493

    Article  CAS  PubMed  Google Scholar 

  • Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    Article  CAS  PubMed  Google Scholar 

  • Kehoe S, Hook J, Nankivell M et al (2015) Primary chemotherapy versus primary surgery for newly diagnosed advanced ovarian cancer (CHORUS): an open-label, randomised, controlled, non-inferiority trial. The Lancet 386:249–257

    Article  Google Scholar 

  • Kim D, Lee ES, Park K et al (2008) Doxorubicin loaded pH-sensitive micelle: antitumoral efficacy against ovarian A2780/DOXR tumor. Pharm Res 25:2074–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Piao Y, Hyeon T (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38:372–390

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kim S, Park C et al (2010) Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers. Adv Mater 22:4280–4283

    Article  CAS  PubMed  Google Scholar 

  • Krause W (2002). Liver-specific X-ray contrast agents. In: Krause W (ed) Contrast agents II: optical, ultrasound, X-Ray and radiopharmaceutical imaging. Springer, Berlin, pp 173–200

    Chapter  Google Scholar 

  • Langereis S, Hijnen N, Strijkers G et al (2013) Research Spotlight: Multifunctional liposomes for MRI and image-guided drug delivery. Ther Deliv 5: 21–24

    Article  Google Scholar 

  • Lee CC, MacKay JA, Frechet JMJ et al (2005) Designing dendrimers for biological applications. Nat Biotech 23:1517–1526

    Article  CAS  Google Scholar 

  • Lee ES, Gao Z, Kim D et al (2008a) Super pH-sensitive multifunctional polymeric micelle for tumor pHe specific TAT exposure and multidrug resistance. J Control Rel 129:228–236

  • Lee S, Cha E-J, Park K et al (2008b) A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angew Chem 120: 2846–2849

  • Lee H-Y, Li Z, Chen K et al (2008c) PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)–conjugated radiolabeled iron oxide nanoparticles. J Nucl Med 49:1371–1379

  • Lee JE, Lee N, Kim H et al (2010) Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. J Am Chem Soc 132:552–557

    Article  CAS  PubMed  Google Scholar 

  • Lim E-K, Huh Y-M, Yang J et al (2011) pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by mri. Adv Mater 23:2436–2442

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Cai W, He L et al (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nano 2: 47–52

    Article  CAS  Google Scholar 

  • Lorenzato C, Cernicanu A, Meyre M-E et al (2013) MRI contrast variation of thermosensitive magnetoliposomes triggered by focused ultrasound: a tool for image-guided local drug delivery. Contrast Media Mol Imaging 8:185–192

    Article  CAS  PubMed  Google Scholar 

  • Lovell JF, Jin CS, Huynh E et al (2011) Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat Mater 10:324–332

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Singh AK, Khan SA et al (2010) Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced raman spectroscopy. J Am Chem Soc 132:18103–18114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu P-L, Chen Y-C, Ou T-W et al (2011) Multifunctional hollow nanoparticles based on graft-diblock copolymers for doxorubicin delivery. Biomaterials 32:2213–2221

    Article  CAS  PubMed  Google Scholar 

  • Marchesan S, Melchionna M, Prato M (2014) Carbon Nanostructures for Nanomedicine: Opportunities and Challenges. Fuller Nanotub Carbon Nanostruct 22: 190–195

    Article  CAS  Google Scholar 

  • Martina M-S, Fortin J-P, Ménager C et al (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127:10676–10685

    Article  CAS  PubMed  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  • Meng H, Liong M, Xia T et al (2010) engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 4:4539–4550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185

    Article  CAS  PubMed  Google Scholar 

  • Min KH, Kim J-H, Bae SM et al (2010) Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. J Control Rel 144:259–266

    Article  CAS  Google Scholar 

  • Moon HK, Lee SH, Choi HC (2009) In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3:3707–3713

    Article  CAS  PubMed  Google Scholar 

  • Moon GD, Choi S-W, Cai X et al (2011) A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J Am Chem Soc 133:4762–4765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore A, Medarova Z, Potthast A et al (2004) In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res 64:1821–1827

    Article  CAS  PubMed  Google Scholar 

  • Na HB, Lee IS, Seo H et al (2007) Versatile PEG-derivatized phosphine oxide ligands for water-dispersible metal oxide nanocrystals. Chem Comm: 5167–5169

  • Nasongkla N, Bey E, Ren J et al (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:2427–2430

    Article  CAS  PubMed  Google Scholar 

  • Nurunnabi M, Cho KJ, Choi JS et al (2010) Targeted near-IR QDs-loaded micelles for cancer therapy and imaging. Biomaterials 31:5436–5444

    Article  CAS  PubMed  Google Scholar 

  • Oerlemans C, Bult W, Bos M et al (2010) Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 27:2569–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olson ES, Jiang T, Aguilera TA et al (2010) Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases. Proc Natl Acad Sci 107: 4311–4316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panowski S, Bhakta S, Raab H et al (2014) Site-specific antibody drug conjugates for cancer therapy. mAbs 6: 34–45

    Article  PubMed  Google Scholar 

  • Pantarotto D, Singh R, McCarthy D et al (2004) Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew Chem Int Ed 43:5242–5246

    Article  CAS  Google Scholar 

  • Park J-H, von Maltzahn G, Ong LL et al (2010) Cooperative nanoparticles for tumor detection and photothermally triggered drug delivery. Adv Mater 22:880–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parungo CP, Ohnishi S, De Grand AM et al (2004) In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance. Ann Surg Oncol 11:1085–1092

    Article  PubMed  Google Scholar 

  • Perche F and Torchilin VP (2013) Recent trends in multifunctional liposomal nanocarriers for enhanced tumor targeting. J Drug Deliv 2013: 705265

  • Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37:912–920

    Article  CAS  PubMed  Google Scholar 

  • Ranjan A, Jacobs GC, Woods DL et al (2012) Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Rel 158:487–494

    Article  CAS  Google Scholar 

  • Rizzo LY, Theek B, Storm G et al (2013) Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin. Biotech 24:1159–1166

    CAS  Google Scholar 

  • Santra S, Perez JM (2011) Selective N-alkylation of β-alanine facilitates the synthesis of a poly(amino acid)-based theranostic nanoagent. Biomacromolecules 12:3917–3927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29

    Article  PubMed  Google Scholar 

  • Sun I-C, Eun D-K, Koo H et al (2011) Tumor-targeting gold particles for dual computed tomography/optical cancer imaging. Angew Chem Int Ed 50:9348–9351

    Article  CAS  Google Scholar 

  • Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28:1565–1571

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Kitamura N and Chujo Y (2011) Bimodal quantitative monitoring for enzymatic activity with simultaneous signal increases in 19F NMR and fluorescence using silica nanoparticle-based molecular probes. Bioconj Chem 22: 1484–1490

    Article  CAS  Google Scholar 

  • Taratula O, Schumann C, Naleway MA et al (2013) A multifunctional theranostic platform based on phthalocyanine-loaded dendrimer for image-guided drug delivery and photodynamic therapy. Mol Pharm 10:3946–3958

    Article  CAS  PubMed  Google Scholar 

  • Thomas R, Park I-K, Jeong Y (2013) Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 14:15910

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomalia DA, Reyna LA, Svenson S (2007) Dendrimers as multi-purpose nanodevices for oncology drug delivery and diagnostic imaging. Biochem Soc Transac 35: 61–67

    Article  CAS  Google Scholar 

  • Vemuri S, Rhodes CT (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 70:95–111

    Article  CAS  PubMed  Google Scholar 

  • von Maltzahn G, Park J-H, Agrawal A et al (2009) Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res 69:3892–3900

    Article  PubMed Central  Google Scholar 

  • Voura EB, Jaiswal JK, Mattoussi H et al (2004) Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 10:993–998

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Zhang L, Su Z et al (2011) Multifunctional hollow mesoporous silica nanocages for cancer cell detection and the combined chemotherapy and photodynamic therapy. ACS Appl Mater Interfaces 3: 2479–2486

    Article  CAS  PubMed  Google Scholar 

  • Wen X, Jackson EF, Price RE et al (2004) Synthesis and characterization of poly(l-glutamic acid) gadolinium chelate: a new biodegradable mri contrast agent. Bioconj Chem 15: 1408–1415

    Article  CAS  Google Scholar 

  • Wiener E, Brechbiel MW, Brothers H et al (1994) Dendrimer-based metal chelates: a new class of magnetic resonance imaging contrast agents. Magn Reson Med 31: 1–8

    Article  CAS  PubMed  Google Scholar 

  • Willmann JK, van Bruggen N, Dinkelborg LM et al (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607

    Article  CAS  PubMed  Google Scholar 

  • Xia Y, Li W, Cobley CM et al (2011) Gold nanocages: from synthesis to theranostic applications. Acc of Chem Res 44: 914–924

    Article  CAS  Google Scholar 

  • Xie J, Chen K, Huang J et al (2010) PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 31:3016–3022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K, Zhang S, Zhang G et al (2010) Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 10:3318–3323

    Article  CAS  PubMed  Google Scholar 

  • Yang H-M, Oh BC, Kim JH et al (2011) Multifunctional poly(aspartic acid) nanoparticles containing iron oxide nanocrystals and doxorubicin for simultaneous cancer diagnosis and therapy. Coll Surf A 391:208–215

    Article  CAS  Google Scholar 

  • Ye F, Barrefelt Å, Asem H et al (2014) Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging. Biomaterials 35:3885–3894

    Article  CAS  PubMed  Google Scholar 

  • Yu MK, Jeong YY, Park J et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew Chem Int Ed 47:5362–5365

    Article  CAS  Google Scholar 

  • Zhang Z, Jia J, Lai Y et al (2010) Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorgan. Med Chem 18:5528–5534

    Article  CAS  Google Scholar 

  • Zhu Z-J, Yeh Y-C, Tang R et al (2011) Stability of quantum dots in live cells. Nat Chem 3:963–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu A, Qu Q, Shao X et al (2012) Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew Chem 124: 7297–7301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongin Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.H., Lee, Y.J. & Kim, D. Image-guided nanomedicine for cancer. Journal of Pharmaceutical Investigation 47, 51–64 (2017). https://doi.org/10.1007/s40005-016-0297-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0297-1

Keywords

Navigation