Skip to main content

Advertisement

Log in

Optimization for glimepiride dissolution enhancement utilizing different carriers and techniques

  • Research Article
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

The present work is a comparative study that matches between carriers and techniques used to prepare solid mixtures with glimepiride. The study is directed towards elucidation of the most promising carrier capable of highly improving drug dissolution along with the most successful technique used for drug formulation. Mixtures were tested for drug content and dissolution. The most optimum formulae were characterized by DSC, IR and XRPD. Kinetic treatment of dissolution data was performed for physical and co-ground mixtures, solid dispersions and their adsorbates, triple solid dispersions and their adsorbates, microwave generated or treated solid dispersions. Results revealed that enhancing effect mostly reached maximum with ternary solid dispersion adsorbate (TSDads). The latter technique demonstrated a dramatic increase in drug dissolution rate which was reflected in the shortest half-life for most carriers at variable degrees. The highest dissolution rate was attained with pregelatinized starch and decreased to variable degrees with remaining carriers. Differences were ascribed to chemical nature as well as relative water solubility of carriers. The combined effects of incorporating surfactants, polymers and adsorbents to glimepiride contributed together to improve wetting, reduce crystallinity and caused substantial increase in the surface area which made TSDads the most promising technique for enhancing dissolution of glimepiride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

PM:

Physical mixtures

CGM:

Co-ground mixtures

SD:

Solid dispersions

SDads:

Solid dispersion adsorbate

TSD:

Triple solid dispersion

TSDads:

Triple solid dispersion adsorbate

MwGSD:

Microwave generated solid dispersion

MwTSD:

Microwave treated solid dispersion

PreGelSt:

Pregelatinized starch

CP:

Crospovidone

References

  • Ahuja N, Katare OP, Singh B (2007) Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur J Pharm Biopharm 65:26–38

    Article  PubMed  CAS  Google Scholar 

  • Al-Obaidi H, Ke P, Brocchini S, Buckton G (2011) Characterization and stability of ternary solid dispersions with PVP and PHPMA. Int J Pharm 419:20–27

    Article  PubMed  CAS  Google Scholar 

  • Ammar HO, Salama HA, Ghorab M, Mahmoud AA (2006) Formulation and biological evaluation of glimepiride–cyclodextrin–polymer systems. Int J Pharm 309:129–138

    Article  PubMed  CAS  Google Scholar 

  • Bergese P, Colombo I, Gervasoni D, Depero LE (2003) Microwave generated nanocomposites for making insoluble drugs soluble. Mater Sci Eng C23:791–795

    CAS  Google Scholar 

  • Biswal S, Sahoo J, Murthy PN (2009) Physicochemical properties of solid dispersions of gliclazide in polyvinylpyrrolidone K90. AAPS PharmSciTech 10(2):329–334

    Article  PubMed  CAS  Google Scholar 

  • Blagden N, de Matas M, Gavan PT, York P (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 59:617–630

    Article  PubMed  CAS  Google Scholar 

  • Boregowda SS, Rao BPR, Jayarama RA, Guruchar NLV (2011) Application of water-soluble/dispersible polymeric carriers in drug dissolution modulation. Asian J Pharm Sci 6(1):26–35

    Google Scholar 

  • Branchu S, Rogueda PG, Plumb AP, Cook WG (2007) A decision-support tool for the formulation of orally active, poorly soluble compounds. Eur J Pharm Sci 32:128–139

    Article  PubMed  CAS  Google Scholar 

  • Bühler V (2005) Polyvinylpyrrolidone excipients for pharmaceuticals. Povidone, Crospovidone and copovidone. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  • Cilurzo F, Selmin F, Minghetti P, Gennari CGM, Demartin F, Montanari L (2008) Characterization and physical stability of fast-dissolving microparticles containing nifedipine. Eur J Pharm Biopharm 68:579–588

    Article  PubMed  CAS  Google Scholar 

  • de Waard H, Hinrichs WLJ, Visser MR, Bologna C, Frijlink HW (2008) Unexpected differences in dissolution behavior of tablets prepared from solid dispersions with a surfactant physically mixed or incorporated. Int J Pharm 349:66–73

    Article  PubMed  Google Scholar 

  • Dureja DH, Madan AK (2007) Solid dispersion adsorbates for enhancement of dissolution rates of drugs. PDA J Pharm Sci Technol 61(2):97–101

    PubMed  Google Scholar 

  • Frick A, Möller H, Wirbitzki E (1998) Biopharmaceutical characterization of oral immediate release drug products. In vitro/in vivo comparison of phenoxymethylpenicillin potassium, glimepiride and levofloxacin. Eur J Pharm Biopharm 46:305–311

    Article  PubMed  CAS  Google Scholar 

  • Goddeeris C, Willems T, Van den Mooter G (2008) Formulation of fast disintegrating tablets of ternary solid dispersions consisting of TPGS 1000 and HPMC 2910 or PVPVA 64 to improve the dissolution of the anti-HIV drug UC 781. Eur J Pharm Sci 34:293–302

    Article  PubMed  CAS  Google Scholar 

  • Ilić I, Dreu R, Burjak M, Homar M, Kerč J, Srčič S (2009) Microparticle size control and glimepiride microencapsulation using spray congealing technology. Int J Pharm 381:176–183

    Article  PubMed  Google Scholar 

  • Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 420:1–10

    Article  PubMed  CAS  Google Scholar 

  • Kawakami K (2012) Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Adv Drug Deliv Rev 64:480–495

    Article  PubMed  CAS  Google Scholar 

  • Khan N, Craig DQM (2003) The influence of drug incorporation on the structure and release properties of solid dispersions in lipid matrices. J Control Release 93:355–368

    Article  PubMed  CAS  Google Scholar 

  • Kiran T, Shastri N, Ramakrishna S, Sadanandam M (2009) Surface solid dispersion of glimepiride for enhancement of dissolution rate. Int J PharmTech Res 1(3):822–831

    CAS  Google Scholar 

  • Leuner C, Dressman J (2000) Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 50:47–60

    Article  PubMed  CAS  Google Scholar 

  • Li J, Liu P, Liu J, Zhang W, Yang J, Fan Y (2012) Novel Tanshinone II A ternary solid dispersion pellets prepared by a single-step technique: in vitro and in vivo evaluation. Eur J Pharm Biopharm 80:426–432

    Article  PubMed  CAS  Google Scholar 

  • Martins RM, Siqueira S, Tacon LA, Freitas LAP (2012) Microstructured ternary solid dispersions to improve carbamazepine solubility. Powder Technol 215–216:156–165

    Article  Google Scholar 

  • Moneghini M, Bellich B, Baxa P, Princivalle F (2008) Microwave generated solid dispersions containing Ibuprofen. Int J Pharm 361:125–130

    Article  PubMed  CAS  Google Scholar 

  • Moneghini M, Zingone G, De Zordic N (2009) Influence of the microwave technology on the physical–chemical properties of solid dispersion with Nimesulide. Powder Technol 195:259–263

    Article  CAS  Google Scholar 

  • Nakanishi S, Fujii M, Sugamura Y, Suzuki A, Shibata Y, Koizumi N, Watanabe Y (2011) Evaluation of the physicochemical characteristics of Crospovidone that influence solid dispersion preparation. Int J Pharm 413:119–125

    Article  PubMed  CAS  Google Scholar 

  • Ning X, Sun J, Han X, Wu Y, Yan Z, Han J, He Z (2011) Strategies to improve dissolution and oral absorption of glimepiride tablets: solid dispersion versus micronization techniques. Drug Dev Ind Pharm 37(6):727–736

    Article  PubMed  CAS  Google Scholar 

  • Parmar KR, Shah SR, Sheth NR (2011) Studies in dissolution enhancement of ezetimibe by solid dispersions in combination with a surface adsorbent. Dissolut Technol 8:55–61

    Google Scholar 

  • Pouton CW (2006) Formulation of poorly water-soluble drugs for oral administration: physicochemical and physiological issues and the lipid formulation classification system. Eur J Pharm Sci 29:278–287

    Article  PubMed  CAS  Google Scholar 

  • Rajpurohit VS, Rakha P, Goyal S, Dureja H, Arorac G, Nagpal M (2011) Formulation and characterization of solid dispersions of glimepiride through factorial design. Iran J Pharm Sci 7(1):7–16

    CAS  Google Scholar 

  • Reddy MS, Fazal ul Haq SM, Apte SS (2011) Solubility enhancement of fenofibrate, a BCS class II drug by self emulsifying drug delivery systems. IRJP 2(11):173–177

    CAS  Google Scholar 

  • Reven S, Grdadolnik J, Kristl J, Zagar E (2010) Hyperbranched poly(esteramides) as solubility enhancers for poorly water-soluble drug glimepiride. Int J Pharm 396:119–126

    Article  PubMed  CAS  Google Scholar 

  • Roquette Pharma and Personal-Care (2012) Glycolys [on line]. Available at http://www.Roquette-pharma.com/glycolys-superdisintegrant-starch-tablets-capsules-glycolate/. Accessed on 9 Oct 2012

  • Shah VP, Konecny JJ, Everett RL, McCullough B, Noorizadeh AC, Skelly JP (1989) In vitro dissolution profile of water-insoluble drug dosage forms in the presence of surfactants. Pharm Res 6(7):612–618

    Article  PubMed  CAS  Google Scholar 

  • Shah J, Vasanti S, Anroop B, Vyas H (2009) Enhancement of dissolution rate of valdecoxib by solid dispersions technique with PVP K 30 & PEG 4000: preparation and in vitro evaluation. J Incl Phenom Macrocycl Chem 63:69–75

    Article  CAS  Google Scholar 

  • Shohin IE, Kulinich JI, Ramenskaya GV, Vasilenko GF (2011) Evaluation of in vitro equivalence for drugs containing BCS class II compound ketoprofen. Dissolut Technol 2:26–29

    Google Scholar 

  • Singh SK, Prakash D, Srinivasan KK, Gowthamarajan K (2011) Liquisolid compacts of glimepiride: an approach to enhance the dissolution of poorly water soluble drugs. J Pharm Res 4(7):2263–2268

    CAS  Google Scholar 

  • Van den Mooter G (2012) The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today 9(2):79–85

    Article  Google Scholar 

  • Vasconcelos T, Sarmento B, Costa P (2007) Solid dispersions as a strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov Today 12(23/24):1068–1075

    Article  PubMed  CAS  Google Scholar 

  • Vidyadhara S, Babu JR, Sasidhar RLC, Ramu A, Prasad SS, Tejasree M (2011) Formulation and evaluation of glimepiride solid dispersions and their tablet formulations for enhanced bioavailability. Pharmanest 1:15–20

    Google Scholar 

  • Vippagunta SR, Maul KA, Tallavajhala S, Grant DJW (2002) Solid-state characterization of nifedipine solid dispersions. Int J Pharm 236:111–123

    Article  PubMed  CAS  Google Scholar 

  • Waters LJ, Bedford S, Parkes GMB (2011) Controlled microwave processing applied to the pharmaceutical formulation of ibuprofen. AAPS PharmSciTech 12(4):1038–1043

    Article  PubMed  CAS  Google Scholar 

  • Wei H, Löbenber RL (2006) Biorelevant dissolution media as a predictive tool for glyburide a class II drug. Eur J Pharm Sci 29:45–52

    Article  PubMed  CAS  Google Scholar 

  • Zajc N, Obreza A, Bele M, Srčič S (2005) Physical properties and dissolution behaviour of nifedipine/mannitol solid dispersions prepared by hot melt method. Int J Pharm 291:51–58

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the members of Pharmaceutics Department in National Research Center in Dokki, Cairo, Egypt for their continuous help and support in terminating the experimental work.

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randa Latif.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makar, R.R., Latif, R., Hosni, E.A. et al. Optimization for glimepiride dissolution enhancement utilizing different carriers and techniques. Journal of Pharmaceutical Investigation 43, 115–131 (2013). https://doi.org/10.1007/s40005-013-0061-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-013-0061-8

Keywords

Navigation